Nanotechnology Now – Press Release: Seattle Hub for Synthetic Biology launched by Allen Institute, Chan Zuckerberg Initiative, and the University of Washington will turn cells into recording devices to unlock secrets of disease: First-of-its-kind research initiative will develop technologies to reveal how changes i


Home > Press > Seattle Hub for Synthetic Biology launched by Allen Institute, Chan Zuckerberg Initiative, and the University of Washington will turn cells into recording devices to unlock secrets of disease: First-of-its-kind research initiative will develop technologies to reveal how changes i

Data visualization shows a 3D abstraction of single cells from the early development of the mouse central nervous system. These data are from a two million-cell experiment tracing early mammalian growth at the single-cell level. Image courtesy of Cole Trapnell, Ph.D.
Data visualization shows a 3D abstraction of single cells from the early development of the mouse central nervous system. These data are from a two million-cell experiment tracing early mammalian growth at the single-cell level. Image courtesy of Cole Trapnell, Ph.D.

Abstract:
The Allen Institute, the Chan Zuckerberg Initiative (CZI), and the University of Washington (UW) today announced the launch of the Seattle Hub for Synthetic Biology, a landmark collaboration that will build new technologies to record the history of cells over time. These technologies will help researchers crack the code and understand not just end point measurements of cells and genes in health and disease but the dynamics of their trajectories over time. The Seattle Hub for Synthetic Biology brings together the best of large-scale science and philanthropy with proven academic power to develop, refine, and share this paradigm-shifting single-cell technology. Led by UW Medicine researchers Jay Shendure, M.D., Ph.D.; Marion Pepper, Ph.D.; Cole Trapnell, Ph.D.; and Jesse Gray, Ph.D., the Seattle Hub for Synthetic Biology will build on technology pioneered at the Allen Discovery Center for Cell Lineage Tracing and UW Medicine’s Brotman Baty Institute for Precision Medicine to reimagine living cells and genomes as devices for recording complex biological information over time.

Seattle Hub for Synthetic Biology launched by Allen Institute, Chan Zuckerberg Initiative, and the University of Washington will turn cells into recording devices to unlock secrets of disease: First-of-its-kind research initiative will develop technologies to reveal how changes i


Seattle, WA | Posted on December 8th, 2023

“Imagine being able to put a smartwatch into each of your cells to record the genome itself and everything that cell is experiencing,” says Dr. Jay Shendure, Executive Director of the Seattle Hub for Synthetic Biology and a professor of genome sciences at the University of Washington School of Medicine. “Currently, when biologists take measurements, we’re limited to either observing how a few things change over time with a microscope, or to measuring everything but only at the moment in time that we break open the cell. With the kind of genomic smart watch that we’re aiming to build, one could recover the full autobiography of each cell, rather than only the last page.”

This new paradigm has the potential to revolutionize how scientists study the role of cells and genes in human health by providing unprecedented clarity into how biological events unfold over time, including the causal chain of molecular and cellular events that begins with a genetic mutation and culminates in a developmental disease seen in the clinic. The technology will be proven out in the form of a research tool to study changes in cells in the context of development and immunology, with the vision to potentially extend the project into diverse research, diagnostic, and clinical applications.

“We are incredibly excited to enter this new era of collaboration to tackle big moonshot projects in partnership with others,” says Rui Costa, D.V.M., Ph.D., President and Chief Executive Officer of the Allen Institute. “We’re bringing together experts in genomic engineering and synthetic biology to advance a new age of experimentation that will allow us to record the history of biological events in our cells, and eventually to design new, smart interventions for disease.”

The Allen Institute and the Chan Zuckerberg Initiative share a joint commitment to open science, and as such, findings from the new institute will be shared widely with the scientific community to fuel progress in labs throughout the Pacific Northwest and around the world.

“Every cell in our body has its own unique history. By developing new technologies to measure and understand the history of our cells over time, including how they are impacted by the environment around them, genetic mutations, and other factors, we can expand scientists’ understanding of what happens at the cellular level when we go from healthy to sick and help pinpoint the earliest causes of disease,” says Priscilla Chan, co-founder and co-CEO of the Chan Zuckerberg Initiative.

“The Seattle Hub for Synthetic Biology demonstrates the enormous potential impact of values-driven partnerships, and it represents a new way of thinking about how we can solve problems more quickly and effectively through scientific collaboration,” says UW President Ana Mari Cauce. “Our shared values, paired with our complimentary perspectives and strengths, are a recipe for success, and I can’t wait to see what this team will accomplish together.”

####

For more information, please click here

Contacts:
Patricia Flores
Chan Zuckerberg Initiative

Copyright © Chan Zuckerberg Initiative

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

News and information


Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023


World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023


VUB team develops breakthrough nanobody technology against liver inflammation December 8th, 2023


Finding the most heat-resistant substances ever made: UVA Engineering secures DOD MURI award to advance high-temperature materials December 8th, 2023

Synthetic Biology


The medicine of the future could be artificial life forms October 6th, 2023


Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021


Synthetic biology reinvents development:The research team have used synthetic biology to develop a new type of genetic design that can reproduce some of the key processes that enable creating structures in natural systems, from termite nests to the development of embryos February 8th, 2021


Machine learning takes on synthetic biology: algorithms can bioengineer cells for you: Berkeley Lab scientists develop a tool that could drastically speed up the ability to design new biological systems September 25th, 2020

Possible Futures


Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023


World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023


VUB team develops breakthrough nanobody technology against liver inflammation December 8th, 2023


Finding the most heat-resistant substances ever made: UVA Engineering secures DOD MURI award to advance high-temperature materials December 8th, 2023

Nanomedicine


Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023


VUB team develops breakthrough nanobody technology against liver inflammation December 8th, 2023


University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects: Study findings make significant contribution to generating tissue-specific ionizable lipids and prompts rethinking of mRNA vaccine design princi December 8th, 2023


Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Discoveries


A color-based sensor to emulate skin’s sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023


Thermal impact of 3D stacking photonic and electronic chips: Researchers investigate how the thermal penalty of 3D integration can be minimized December 8th, 2023


Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023


Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

Announcements


2D material reshapes 3D electronics for AI hardware December 8th, 2023


A color-based sensor to emulate skin’s sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023


VUB team develops breakthrough nanobody technology against liver inflammation December 8th, 2023


Finding the most heat-resistant substances ever made: UVA Engineering secures DOD MURI award to advance high-temperature materials December 8th, 2023

Leave a Reply

Your email address will not be published. Required fields are marked *