Home > Press > Creating a nanospace like no other: Scientists build a nanocage with antiaromatic walls
(a) construction of antiaromatic-walled nanospace. (b) X-ray crystal structure with a 3D NICS grid, showing magnetic deshielding experienced within the nanospace. Antiaromaticity effects becomes stronger in the order of yellow |
Abstract:
Researchers at Tokyo Institute of Technology, the University of Cambridge, and the University of Copenhagen have built a self-assembled nanocage with a very unusual nanospace: Its walls are made of antiaromatic molecules, which are generally considered too unstable to work with. By overturning assumptions about the limits of nano-chemical engineering, the study creates an entirely new nanospace for scientists to explore. Nanometer-sized cavities are already finding a range of useful applications in chemistry, medicine and environmental science.
Creating a nanospace like no other: Scientists build a nanocage with antiaromatic walls
Tokyo, Japan | Posted on October 25th, 2019
Scientists including Masahiro Yamashina of Tokyo Institute of Technology (JSPS Overseas Research Fellow, at that time) and Jonathan R. Nitschke of the University of Cambridge, reporting their work in the journal Nature, describe the construction of a new type of nanospace inside “a self-assembled cage composed of four metal ions with six identical antiaromatic walls.”
Until now, many teams have developed nanocages with aromatic walls, but none with antiaromatic compounds, owing to the challenges posed by their inherent instability. Aromaticity refers to a property of ring-shaped organic compounds that makes them highly stable, whereas antiaromaticity describes compounds that are far more reactive, due to a difference in the number of so-called π-electrons shared by the ring. (For a quick summary of the differences between the two types of compounds, refer to Antiaromatic molecule displays record electrical conductance.)
The team’s search for a suitable building block for their nanocage led them to a 2012 study by Hiroshi Shinokubo and co-workers in Japan. This study reported the synthesis of an unusually stable, nickel-based antiaromatic compound called norcorrole. Then, drawing on Jonathan R. Nitschke and his group’s expertise in subcomponent self-assembly, the team succeeded in building a three nanometer-diameter cage with a norcorrole skeleton.
To investigate the degree of antiaromacity within the cage, the team performed nucleus-independent chemical shift (NICS) calculations. The results indicated that the norcorrole panels appear to work together to enhance antiaromacity. The NICS value was consistently high in the central part of the cage, suggesting that the panels reinforce each other.
The unique environment inside the cage was further tested by encapsulating a series of guest molecules, beginning with coronene which has been already encapsulated within the aromatic cage.
The researchers hypothesized that when exposed to an external magnetic field, guest molecules in an aromatic-walled cage would experience a shielding effect, while those in an antiaromatic-walled cage would experience a deshielding effect.
As predicted by theory, nuclear magnetic resonance (NMR) spectroscopy analyses revealed a deshielding effect attributable to the antiaromatic walls.
All guest molecules tested in the study showed significant downfield chemical shifting, an indicator of the degree of deshielding. The shift differences ranged from 0.7 to 14.9 parts per million. Of these, a carbon nanobelt showed the highest degree of downfield shifting observed so far resulting from an antiaromatic environment.
The cage can be considered as a new type of NMR shift reagent, the researchers say, meaning that it could be a useful tool for structural analysis, ie for interpreting the finest structures of organic compounds.
Future work will focus on investigating chemical reactivity within the nanospace.
####
For more information, please click here
Contacts:
Emiko Kawaguchi
81-357-342-975
Copyright © Tokyo Institute of Technology
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
The Nitschke Group, Department of Chemistry, University of Cambridge:
Department of Chemistry, School of Science:
Biomimetics: Artificial receptor distinguishes between male and female hormones
Sweet success: Nanocapsule perfectly binds sucrose in water
Stabilization of Highly Reactive Reagents upon Encapsulation
News and information
Scientists tame Josephson vortices November 1st, 2019
Arrowhead Pharmaceuticals Presents Preclinical Data on ARO-ENaC at the North American Cystic Fibrosis Conference October 31st, 2019
Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019
Chemistry
Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019
Nanomedicine
Arrowhead Pharmaceuticals Presents Preclinical Data on ARO-ENaC at the North American Cystic Fibrosis Conference October 31st, 2019
Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019
Small magnets reveal big secrets: Work by international research team could have wide-ranging impact on information technology applications October 28th, 2019
Monitoring the corrosion of bioresorbable magnesium October 25th, 2019
Discoveries
Scientists tame Josephson vortices November 1st, 2019
Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019
Small magnets reveal big secrets: Work by international research team could have wide-ranging impact on information technology applications October 28th, 2019
Announcements
Scientists tame Josephson vortices November 1st, 2019
Arrowhead Pharmaceuticals Presents Preclinical Data on ARO-ENaC at the North American Cystic Fibrosis Conference October 31st, 2019
Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers
Scientists tame Josephson vortices November 1st, 2019
Arrowhead Pharmaceuticals Presents Preclinical Data on ARO-ENaC at the North American Cystic Fibrosis Conference October 31st, 2019
Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019
Environment
Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM19 October 14th, 2019
Physics: An ultrafast glimpse of the photochemistry of the atmosphere October 11th, 2019
Inspired by natural signals in living cells, researchers design artificial gas detector: Tiny box puts itself together and glows September 13th, 2019
This new nanotech could help clean up Earths microplastics August 3rd, 2019
Nanobiotechnology
Arrowhead Pharmaceuticals Presents Preclinical Data on ARO-ENaC at the North American Cystic Fibrosis Conference October 31st, 2019
Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019
Bio-inspired nano-catalyst guides chiral reactions October 25th, 2019
Monitoring the corrosion of bioresorbable magnesium October 25th, 2019