Home > Press > Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery
Virginia Tech physicist C. Nadir Kaplan (at left) and doctoral candidate Chinmay Katke (right) discovered a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery. Photo by Spencer Coppage for Virginia Tech.
CREDIT Photo by Spencer Coppage for Virginia Tech. |
Abstract:
In a May 15 paper released in the journal Physical Review Letters, Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery.
Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery
Blacksburg, VA | Posted on May 17th, 2024
The paper, written by doctoral candidate Chinmay Katke, assistant professor C. Nadir Kaplan, and co-author Peter A. Korevaar from Radboud University in the Netherlands, proposes a new physical mechanism that could speed up the expansion and contraction of hydrogels. For one thing, this opens up the possibility for hydrogels to replace rubber-based materials used to make flexible robotsenabling these fabricated materials to perhaps move with a speed and dexterity close to that of human hands.
Soft robots are already being used in manufacturing, where a hand-like device is programmed to grab an item from a conveyer beltpicture a hot dog or piece of soapand place it in a container to be packaged. But the ones in use now lean on hydraulics or pneumatics to change the shape of the hand to pick up the item.
Akin to our own body, hydrogels mostly contain water and are everywhere around us, e.g., food jelly and shaving gel. Katke, Korevaar, and Kaplans research appears to have found a method that allows hydrogels to swell and contract much more quickly, which would improve their flexibility and capability to function in different settings.
What did the Virginia Tech scientists do?
Living organisms use osmosis for such activities as bursting seed dispersing fruits in plants or absorbing water in the intestine. Normally, we think of osmosis as a flow of water moving through a membrane, with bigger molecules like polymers unable to move through. Such membranes are called semi-permeable membranes and were thought to be necessary to trigger osmosis.
Previously, Korevaar and Kaplan had done experiments by using a thin layer of hydrogel film comprised of polyacrylic acid. They had observed that even though the hydrogel film allows both water and ions to pass through and is not selective, the hydrogel rapidly swells due to osmosis when ions are released inside the hydrogel and shrinks back again.
Katke, Korevaar, and Kaplan developed a new theory to explain the above observation. This theory tells that microscopic interactions between ions and polyacrylic acid can make hydrogel swell when the released ions inside the hydrogel are unevenly spread out. They called this diffusio-phoretic swelling of the hydrogels. Furthermore, this newly discovered mechanism allows hydrogels to swell much faster than what has been previously possible.
Why is that change important?
Kaplan explained: Soft agile robots are currently made with rubber, which does the job but their shapes are changed hydraulically or pneumatically. This is not desired because it is difficult to imprint a network of tubes into these robots to deliver air or fluid into them.
Imagine, Kaplan said, how many different things you can do with your hand and how fast you can do them owing to your neural network and the motion of ions under your skin. Because the rubber and hydraulics are not as versatile as your biological tissues, which is a hydrogel, state-of-the-art soft robots can only do a limited number of movements.
How could this improve our lives?
Katke explained that the process they have researched allows the hydrogels to change shape then change back to their original form significantly faster this way in soft robots that are larger than ever before.
At present, only microscopic-sized hydrogel robots can respond to a chemical signal quickly enough to be useful and larger ones require hours to change shape, Katke said. By using the new diffusio-phoresis method, soft robots as large as a centimeter may be able to transform in just a few seconds, which is subject to further studies.
Larger agile soft robots that could respond quickly could improve assistive devices in healthcare, pick-and-place functions in manufacturing, search and rescue operations, cosmetics used for skincare, and contact lenses.
####
For more information, please click here
Contacts:
Lon Wagner
Virginia Tech
Copyright © Virginia Tech
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
What is “time” for quantum particles? Publication by TU Darmstadt researchers in renowned journal “Science Advances” May 17th, 2024
Robotics
Femtosecond laser technique births “dancing microrobots”: USTC’s breakthrough in multi-material microfabrication August 11th, 2023
Liquid metal sticks to surfaces without a binding agent June 9th, 2023
Possible Futures
Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Nanomedicine
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Good as gold – improving infectious disease testing with gold nanoparticles April 5th, 2024
Discoveries
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Finding quantum order in chaos May 17th, 2024
Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024
What is “time” for quantum particles? Publication by TU Darmstadt researchers in renowned journal “Science Advances” May 17th, 2024
Announcements
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Finding quantum order in chaos May 17th, 2024
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
What is “time” for quantum particles? Publication by TU Darmstadt researchers in renowned journal “Science Advances” May 17th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024