Nanotechnology Now – Press Release: FSU researchers develop new methods to generate and improve magnetism of 2D materials


Home > Press > FSU researchers develop new methods to generate and improve magnetism of 2D materials

Michael Shatruk, professor in the Florida State University Department of Chemistry and Biochemistry.

Credit
Florida State University
Michael Shatruk, professor in the Florida State University Department of Chemistry and Biochemistry.

Credit
Florida State University

Abstract:
At just a few atoms of thickness, 2D materials offer revolutionary possibilities for new technologies that are microscopically sized but have the same capabilities as existing machines.

FSU researchers develop new methods to generate and improve magnetism of 2D materials


Tallahassee, FL | Posted on December 13th, 2024

Florida State University researchers have unlocked a new method for producing one class of 2D material and for supercharging its magnetic properties. The work was published in Angewandte Chemie.

Experimenting on a metallic magnet made from the elements iron, germanium and tellurium and known as FGT, the research team made two breakthroughs: a collection method that yielded 1,000 times more material than typical practices, and the ability to alter FGT’s magnetic properties through a chemical treatment.

“2D materials are really fascinating because of their chemistry, physics and potential uses,” said Michael Shatruk, a professor in the Department of Chemistry and Biochemistry who led the research. “We’re moving toward developing more efficient electronic devices that consume less power, are lighter, faster and more responsive. 2D materials are a big part of this equation, but there’s still a lot of work to be done to make them viable. Our research is part of that effort.”

The research started with liquid phase exfoliation, a solution-processing technique that produces two-dimensional nanosheets from layered crystals in large quantities. The research team saw that other chemists were using this method to synthesize 2D semiconductors. They decided to apply it to magnetic materials.

Liquid phase exfoliation allows chemists to collect much more of these materials than would be possible through a more widespread technique of mechanical exfoliation that uses tape in the collection process. In Shatruk’s case, it allowed researchers to gather 1,000 times more materials than in the mechanical exfoliation methods.

“That was the first step, and we found that it was pretty efficient,” Shatruk said. “Once we did the exfoliation, we thought, ‘Well, exfoliating things seems easy. What if we applied chemistry to these exfoliated nanosheets?’”

Their success with exfoliation produced enough FGT for further exploration into the material’s chemistry. The team mixed the nanosheets with an organic compound called TCNQ, or 7,7,8,8-Tetracyanoquinodimethane. This process created a new material, FGT-TCNQ, through the transfer of electrons from the FGT nanosheets to the TCNQ molecules.

The new material was another breakthrough — a permanent magnet with higher coercivity, a measure of a magnet’s ability to withstand an external magnetic field.

The best permanent magnets used in the state-of-the-art technologies withstand magnetic fields of several Tesla, but achieving such resistance with 2D magnets like FGT is much more challenging, because the magnetic moment in the bulk material can be flipped with almost a negligible field — that is, the material has nearly zero coercivity.

Exfoliation of FGT crystals to nanosheets yielded a material with coercivity of about 0.1 Tesla, which is not high enough for many applications. When the FSU researchers added TCNQ to the FGT nanosheets, they increased the coercivity to 0.5 Tesla, a five-fold increase and very promising for potential applications of 2D magnets, for example, for spin filtering, electromagnetic shielding or data storage.

Unlike electromagnets, which need electricity to maintain a magnetic field, permanent magnets possess a persistent magnetic field on their own. They’re crucial components in all sorts of technology, such as MRI machines, hard drives, cell phones, wind turbines, loudspeakers and other devices.

The researchers plan to explore the possibility of treating materials through other methods, such as by gas transport or by exfoliating the molecular layer of TCNQ or similar active molecules and adding it to the magnetic material. They’ll also examine how such treatment might affect other 2D materials, such as semiconductors.

It’s an exciting finding, because it opens up so many paths for further exploration,” said doctoral candidate and co-author Govind Sarang. “There are a lot of different molecules that can help stabilize 2D magnets, enabling the design of materials with multiple layers whose magnetic properties are manipulated to enhance their functionality.”

FSU co-authors for this research included undergraduate student Jaime Garcia-Oliver and faculty researcher Yan Xin. Collaborators from the University of Valenicia, Spain, were Alberto M. Ruiz and Professor José J. Baldoví.

This research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Bill Wellock
Florida State University

Office: 850-645-1504

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Article Title

Magnetism/Magnons


Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024


Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024


Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024


Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024


UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

2 Dimensional Materials


UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024


A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024


Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy


Researchers succeed in controlling quantum states in a new energy range December 13th, 2024


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024


Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024


New discovery aims to improve the design of microelectronic devices September 13th, 2024

Possible Futures


Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024


Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024


Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024


UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries


How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024


Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024


Researchers succeed in controlling quantum states in a new energy range December 13th, 2024


Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024

Materials/Metamaterials/Magnetoresistance


Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024


New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024


How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024


Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024


Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024


Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024


UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024


Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024


Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Leave a Reply

Your email address will not be published. Required fields are marked *