Nanotechnology Now – Press Release: Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma


Home > Press > Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma

Professor Reinhard Dörner (left) and Dr Maksim Kunitzki in front of the COLTRIMS reaction microscope at Goethe University, which was used to observe the quantum wave. (Photo: Goethe University Frankfurt)
Professor Reinhard Dörner (left) and Dr Maksim Kunitzki in front of the COLTRIMS reaction microscope at Goethe University, which was used to observe the quantum wave. (Photo: Goethe University Frankfurt)

Abstract:
Anyone entering the world of quantum physics must prepare themself for quite a few things unknown in the everyday world: Noble gases form compounds, atoms behave like particles and waves at the same time and events that in the macroscopic world exclude each other occur simultaneously.

Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma


Frankfurt, Germany | Posted on December 30th, 2020

In the world of quantum physics, Reinhard Dörner and his team are working with molecules which – in the sense of most textbooks – ought not to exist: Helium compounds with two atoms, known as helium dimers. Helium is called a noble gase precisely because it does not form any compounds. However, if the gas is cooled down to just 10 degrees above absolute zero (minus 273 °C) and then pumped through a small nozzle into a vacuum chamber, which makes it even colder, then – very rarely – such helium dimers form. These are unrivaledly the weakest bound stable molecules in the Universe, and the two atoms in the molecule are correspondingly extremely far apart from each other. While a chemical compound of two atoms commonly measures about 1 angstrom (0.1 nanometres), helium dimers on average measure 50 times as much, i.e. 52 angstrom.

The scientists in Frankfurt irradiated such helium dimers with an extremely powerful laser flash, which slightly twisted the bond between the two helium atoms. This was enough to make the two atoms fly apart. They then saw – for the very first time – the helium atom flying away as a wave and record it on film.

According to quantum physics, objects behave like a particle and a wave at the same time, something that is best known from light particles (photons), which on the one hand superimpose like waves where they can pile upor extinguish each other (interference), but on the other hand as “solar wind” can propel spacecraft via their solar sails, for example.

That the researchers were able to observe and film the helium atom flying away as a wave at all in their laser experiment was due to the fact that the helium atom only flew away with a certain probability: With 98 per cent probability it was still bound to its second helium partner, with 2 per cent probability it flew away. These two helium atom waves – Here it comes! Quantum physics! – superimpose and their interference could be measured.

The measurement of such “quantum waves” can be extended to quantum systems with several partners, such as the helium trimer composed of three helium atoms. The helium trimer is interesting because it can form what is referred to as an “exotic Efimov state”, says Maksim Kunitski, first author of the study: “Such three-particle systems were predicted by Russian theorist Vitaly Efimov in 1970 and first corroborated on caesium atoms. Five years ago, we discovered the Efimov state in the helium trimer. The laser pulse irradiation method we’ve now developed might allow us in future to observe the formation and decay of Efimov systems and thus better understand quantum physical systems that are difficult to access experimentally.”

####

For more information, please click here

Contacts:
Dr. Markus Bernards

49-697-981-2498

@goetheuni

Copyright © Goethe University Frankfurt

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

RELATED JOURNAL ARTICLE:

Video:

News and information

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets December 29th, 2020

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Quantum Physics

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

Videos/Movies

Pitt researchers create nanoscale slalom course for electrons: Professors from the Department of Physics and Astronomy have created a serpentine path for electrons November 27th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

Materials scientists learn how to make liquid crystal shape-shift September 25th, 2020

Engineers produce a fisheye lens that’s completely flat: The single piece of glass produces crisp panoramic images September 22nd, 2020

Possible Futures

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets December 29th, 2020

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Chemists describe a new form of ice December 25th, 2020

Discoveries

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets December 29th, 2020

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Understanding nanoparticle entry mechanism into tumors December 25th, 2020

Announcements

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets December 29th, 2020

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Understanding nanoparticle entry mechanism into tumors December 25th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets December 29th, 2020

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Record-setting thermoelectric figure of merit achieved for metal oxides December 29th, 2020

Understanding nanoparticle entry mechanism into tumors December 25th, 2020

Photonics/Optics/Lasers

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets December 29th, 2020

Perfect transmission through barrier using sound: New study experimentally proved for the first time a century-old quantum theory that relativistic particles can pass through a barrier with 100% transmission December 29th, 2020

Experiment takes ‘snapshots’ of light, stops light, uses light to change properties of matter December 25th, 2020

Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020

Research partnerships

Researchers develop new way to break reciprocity law: The breakthrough makes a significant step forward in photonics and microwave technology by eliminating the need for bulky magnets December 29th, 2020

Understanding nanoparticle entry mechanism into tumors December 25th, 2020

Aledia, French Developer of Next-Generation MicroLED Displays For High-Volume Consumer Markets, Announces it Has Produced its First Nanowire Chips on 300mm Silicon Wafers Using CEA-Leti Pilot Lines: Company will produce microLEDs on both 200mm and 300mm silicon wafers December 15th, 2020

An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020

Quantum nanoscience

Theory describes quantum phenomenon in nanomaterials: Osaka City University scientists have developed mathematical formulas to describe the current and fluctuations of strongly correlated electrons in quantum dots. Their theoretical predictions could soon be tested experimentally December 25th, 2020

Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020

Pitt researchers create nanoscale slalom course for electrons: Professors from the Department of Physics and Astronomy have created a serpentine path for electrons November 27th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

Leave a Reply

Your email address will not be published. Required fields are marked *