Nanotechnology Now – Press Release: Activating lattice oxygen in perovskite oxide to optimize fuel cell performance


Home > Press > Activating lattice oxygen in perovskite oxide to optimize fuel cell performance

A figure that explains the modulation of the stability and activity of the SOFC anode confirmed by the researchers in this study. As the level of cobalt increases, the hydrogen oxidation reaction (HOR) activity in the anode increases but at the same time, the lattice oxygen bonding increases which heightens the risk of deterioration of the material stability.

CREDIT
POSTECH
A figure that explains the modulation of the stability and activity of the SOFC anode confirmed by the researchers in this study. As the level of cobalt increases, the hydrogen oxidation reaction (HOR) activity in the anode increases but at the same time, the lattice oxygen bonding increases which heightens the risk of deterioration of the material stability.

CREDIT
POSTECH

Abstract:
To optimize the performance of fuel cells, a golden ratio must be found. Recently, a Korean research team has uncovered that the performance of fuel cells varies depending on the Co-doping level. Finding the optimal ratio is anticipated to help maximize the performance of fuel cells in the future.

Activating lattice oxygen in perovskite oxide to optimize fuel cell performance


Pohang, South Korea | Posted on December 17th, 2021

A research team led by Professor Jeong Woo Han and Ph.D. candidate Chaesung Lim (Department of Chemical Engineering) of POSTECH, in joint research with Professor Yan Chen and Dr. Huijun Chen of South China University of Technology, has confirmed that as the Co-doping level in the perovskite oxide thin film increases, the lattice oxygen is increasingly activated in the film.

Since electrical energy is generated as lattice oxygen – which makes up the thin film – is activated, controlling this can improve the performance of a solid oxide fuel cell (SOFC), which uses the thin film as an anode.

The SOFC consists of an oxygen ion electrolyte and cathode-anode on both sides. On the cathode side, oxygen ions are formed via oxygen reduction. These ions move to the anode via electrolytes and generate water and electricity by reacting with the hydrogen supplied at the anode.

The research team added cobalt of different levels to the perovskite oxide film model using the pulsed laser deposition (PLD) method. As Co-doping level increased, the lattice oxygen activity in the film also increased and improved the performance of the SOFC anode. However, when the Co-doping level exceeded 70%, the stability of the anode rapidly degraded, lowering its performance.

SOFC, which converts chemical energy into electrical energy without emitting harmful gases, can replace fossil fuels that emit pollutants as a by-product. This makes SOFC the optimal alternative for overcoming the climate crisis as it can be used as a source of energy for powerplants that emit lots of carbon.

However, there are many factors that affect the lattice oxygen activity of the SOFC anode, making it difficult to fine-tune it. In this study, Professor Han’s research team has discovered a way to ultimately improve the performance of fuel cells by allowing the lattice oxygen activity to be modulated with the Co-doping level.

“The effect of cobalt-doping level on the performance of SOFC anodes was affirmed with both theory and experiments in this study,” explained Professor Jeong Woo Han. “This signifies that the strategy to develop the best-performing SOFC has been confirmed.”

This joint study was conducted with the support from the Nano Materials Technology Development Program funded by the National Research Foundation of Korea. The findings from were recently published in Advanced Science, an academic journal of the highest authority in the field of materials science.

####

For more information, please click here

Contacts:
Jinyoung Huh
Pohang University of Science & Technology (POSTECH)

Office: 82-54-279-2415

Copyright © Pohang University of Science & Technology (POSTECH)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information


Redrawing the lines: Growing inexpensive, high-quality iron-based superconductors: Regions of different crystalline orientation in superconductors can be manipulated in a simple and scalable manner to improve their properties December 17th, 2021


Nanoparticle therapeutic enhances cancer immunotherapy December 17th, 2021


Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021


Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Perovskites


Reaction-dependent coffee-ring-regulating method in spray-coating perovskite November 5th, 2021


A sunny outlook for solar: New research demonstrates great promise of all-inorganic perovskite solar cells for improving the efficiencies of solar cells October 15th, 2021


A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021


Perovskite solar cells: Interfacial loss mechanisms revealed August 20th, 2021

Possible Futures


Fabricating stable, high-mobility transistors for next-generation display technologies December 17th, 2021


UMass Lowell scientist pioneers new class of semiconductors: $1.7M NSF project aims to improve wireless communication, imaging, more December 17th, 2021


Nanoparticle therapeutic enhances cancer immunotherapy December 17th, 2021


Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021

Discoveries


Fabricating stable, high-mobility transistors for next-generation display technologies December 17th, 2021


UMass Lowell scientist pioneers new class of semiconductors: $1.7M NSF project aims to improve wireless communication, imaging, more December 17th, 2021


Nanoparticle therapeutic enhances cancer immunotherapy December 17th, 2021


Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021

Announcements


UMass Lowell scientist pioneers new class of semiconductors: $1.7M NSF project aims to improve wireless communication, imaging, more December 17th, 2021


Nanoparticle therapeutic enhances cancer immunotherapy December 17th, 2021


Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021


Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Redrawing the lines: Growing inexpensive, high-quality iron-based superconductors: Regions of different crystalline orientation in superconductors can be manipulated in a simple and scalable manner to improve their properties December 17th, 2021


Nanoparticle therapeutic enhances cancer immunotherapy December 17th, 2021


Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021


Invited CEA-Leti Paper at IEDM 2021 Identifies Main Challenges Facing Large-Scale Si Quantum Computing: Second Paper Details Innovative Silicon Quantum Device Integration For Effective Qubit Control December 17th, 2021

Energy


Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021


Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021


Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021


Reaction-dependent coffee-ring-regulating method in spray-coating perovskite November 5th, 2021

Fuel Cells


Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021


Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021


Cheaper hydrogen production: Efficient water and urea electrolysis with bimetallic yolk-shell nanoparticles September 10th, 2021


HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

Leave a Reply

Your email address will not be published. Required fields are marked *