Home > Press > NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing
Guido Pagano is an assistant professor of physics and astronomy at Rice University
CREDIT Jeff Fitlow/Rice University |
Abstract:
Rice University physicist Guido Pagano has won a prestigious CAREER award from the National Science Foundation (NSF) to study quantum entanglement and develop new error-correcting tools for quantum computation.
NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing
Houston, TX | Posted on January 14th, 2022
CAREER awards are the NSFs most esteemed grants for early-career faculty. The agency gives about 500 of the five-year grants each year for young scientists it believes have the potential to serve as academic role models in research and education.
The idea is to develop tools to not only create entanglement via unitary evolution, as you would do in a quantum computation, but also partially measure the system during this evolution and see if the entanglement survives this perturbation, said Pagano, assistant professor of physics and astronomy. I want to understand what happens when I keep iterating those two operations: partial measurement and quantum evolution.
Measuring a quantum entangled system causes perturbations, and one goal of the work is to find out how much disruption the entangled system can withstand under particular conditions. To find those answers, Paganos team will create new tools quantum computer makers could also use for correcting errors caused by quantum decoherence, a major hurdle in the fledgling field.
Paganos lab specializes in the study of quantum entanglement, the phenomenon that makes quantum computing possible. Pagano and his students cool ytterbium ions within a fraction of a degree of absolute zero and string them together like pearls on necklaces. The ions are held in 1D strands by electromagnetic traps that both isolate individual ions and allow them to share quantum states.
The setup is similar to those used by some quantum computing companies, but Paganos team uses the system to ask fundamental questions about how entanglement propagates and is affected by disturbances like the partial measurements required for error-corrected quantum computation.
Our platform is a pristine spin system, Pagano said. Each ion has two possible states. They can be up or down. And I can optically manipulate their spins to create quantum states and study what happens when those entangled spin states are evolved in ways that are similar to the unitary operations used in quantum computation.
What this grant proposes is also related to quantum error correction, Pagano said. The idea is to find ways to protect the entangled ions while youre doing the very, very disruptive operations related to measurement on other, auxiliary ions.
For example, Pagano and his students might create a string of 10 entangled ions, evolve the entangled quantum state of all 10, then conduct a measurement on three ions while protecting the others. Pagano likened the process to shelving the quantum information of the seven ions that arent being measured, conducting a measurement on the remaining three, and then continuing with the next step in the evolution of the quantum system.
The information stored on the shelf is protected, he said. Then, whenever you’ve finished the measurement, you can bring the quantum information back from the shelf to the actual system and keep going.
By repeating this process, Paganos group can both study how measurement perturbs the ions shared quantum state and gather information that can be used to correct errors arising from quantum decoherence.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nations top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 4,052 undergraduates and 3,484 graduate students, Rices undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplingers Personal Finance.
Follow Rice News and Media Relations via Twitter @RiceUNews.
For more information, please click here
Contacts:
Jade Boyd
Rice University
Office: 713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
Photon recycling The key to high-efficiency perovskite solar cells January 14th, 2022
Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022
Quantum Physics
Physicists watch as ultracold atoms form a crystal of quantum tornadoes: The new observations record a key crossover from classical to quantum behavior January 7th, 2022
Physics
Physicists watch as ultracold atoms form a crystal of quantum tornadoes: The new observations record a key crossover from classical to quantum behavior January 7th, 2022
Possible Futures
UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022
The free-energy principle explains the brain January 14th, 2022
Quantum Computing
Intense monocycle terahertz pulses from shifting electrons in quantum structures January 7th, 2022
QuTech takes important step in quantum computing with error correction: Until now researchers have encoded and stabilized. We now show that we can compute as well. December 17th, 2021
PASQAL announces quantum computing collaboration with NVIDIA December 10th, 2021
Announcements
Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022
UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022
The free-energy principle explains the brain January 14th, 2022
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022
Nanotube fibers stand strong — but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021
Major instrumentation initiative for research into quantum technologies: Paderborn University receives funding from German Research Foundation December 24th, 2021