Combining the benefits of both fluid and solids, researchers have demonstrated various functions for their slimebots, including navigation in narrow channels much smaller than their size; object capture operations via the curl or endocytosis modes; and circuit repair and controlled switching using their own conductive properties that can even be reconfigured as self-healing strain sensors for monitoring human motion. The widely applicable working environment of these novel magnetic slime robots make them promising for future applications in biomedical and wearable devices.