Nanotechnology Now – Press Release: National Cheng Kung University researchers present new solution for wastewater remediation: The new eco-friendly nanocomposite hydrogels can be reused many times to adsorb ionic pollutants from wastewater


Home > Press > National Cheng Kung University researchers present new solution for wastewater remediation: The new eco-friendly nanocomposite hydrogels can be reused many times to adsorb ionic pollutants from wastewater

Abstract:
Synthetic dyes are used across a wide variety of industries and constitute a serious concern when it comes to water pollution. These dyes are not only toxic, but they also persist in the environment for a long time without degradation. Most approaches to removing synthetic dyes from water are based on adsorption—a phenomenon where a chemical molecule becomes bonded to the surface of a substrate called an adsorbent. Carbon-based systems are commonly adopted as adsorbents, but they are limited by the need for a safe disposal route for the used adsorbent and the inability to reuse the material. Many polymers have also been investigated as adsorbents, but they show poor water solubility and stability.

National Cheng Kung University researchers present new solution for wastewater remediation: The new eco-friendly nanocomposite hydrogels can be reused many times to adsorb ionic pollutants from wastewater


Princeton, NJ | Posted on April 15th, 2022

Recently, an international team of researchers—including Prof. Wei-Hsin Chen of National Cheng Kung University, Taiwan—have developed a novel eco-friendly and reusable nanocomposite-based solution for removing toxic dyes from wastewater. The paper describing the study was made available online on 31 July 2021 and was published in Volume 421 of the Journal of Hazardous Materials on 5 January 2022.

“Carboxymethyl cellulose (CMC) is an inexpensive cellulose derivative that is easy to produce, eco-friendly, and biocompatible. But it has relatively poor thermal and mechanical properties. In our study, we successfully improved CMC by combining it with polyacrylic acid (PAA). The prepared materials can be efficient adsorbents for ionic pollutants in wastewater treatment.” says Prof. Chen.

CMC is a well-characterized, inexpensive polymer derived from natural cellulose, an abundant polymer found in plants and microalgae such as Chlorella sp. In this study, the researchers combined CMC with PAA—a water-loving, non-toxic and safe polymer—and loaded the resultant hydrogels with graphene oxide. Finally, by subjecting these hydrogels to repeated cycles of washing and freeze-drying, they converted the hydrogels into ‘aerogels,’ which are porous solid networks containing air pockets that have high adsorptive capacities.

The research team then characterized the aerogels using field emission scanning electron microscopy and laboratory techniques and found that different levels of graphene oxide created different sized pores within the aerogel. They found that the addition of graphene oxide increased the specific surface area and thermal stability of the nanocomposite hydrogels. They also saw that the pore size of the hydrogels decreased with increasing concentrations of graphene oxide. Moreover, the aerogel developed in this study had an adsorption capacity of 138 mg/g of methylene blue after 250 min—which is among the highest methylene blue adsorption capacities reported in literature. According to Prof. Chen, “The adsorbent developed in this study is both environmentally friendly and cost-effective, indicating its high application potential for the removal of cationic dyes from wastewater.”

Finally, the researchers saw that the new hydrogels retained about 90% of their adsorption capacity even after nine cycles of use and regeneration.

They then wanted to investigate the mechanism behind the high adsorption capacity of the hydrogels, so they performed density functional theory (DFT) simulations. The results of their simulations suggested that the methylene blue bound more strongly to graphene oxide than to CMC or PAA. They also saw that the adsorption of methylene blue on the graphene oxide in the nanocomposite took place via pi-electron bonding, hydrogen bonding, and electrostatic interactions.

The nanocomposite hydrogels fabricated in this study provide an eco-friendly, stable, efficient, and reusable adsorbent material to remove synthetic dyes from wastewater and provide improvements to both environment and human health.

About Prof. Wei-Hsin Chen

Wei-Hsin Chen is a Distinguished Professor at the Department of Aeronautics and Astronautics at the National Cheng Kung University, Taiwan. His research interests are aerosols, bioenergy, clean energy, and hydrogen energy. Prof. Chen was previously associated with Fooyin University, National Taiwan Ocean University, and the National University of Tainan. He has authored over 400 research papers in renowned journals and has been cited approximately 18,000 times. He has been affiliated with the National Cheng Kung University since 2013.

####

For more information, please click here

Contacts:
Indrani Das
Cactus Communications

Office: 91-226-714-8888

Copyright © Cactus Communications

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Reference

News and information


Scientists develop indoor-active photocatalyst for antiviral coating against various variant types of novel coronavirus SARS-CoV-2 April 15th, 2022


First hybrid quantum bit based on topological insulators: Scientists at Forschungszentrum Jülich take an important step on the path towards topological quantum computers April 15th, 2022


Flexible quantum sieve made at TU Dresden filters the fuel of Starship Enterprise April 15th, 2022


Photocatalysts with built-in electric field helps to remove pollutants from water April 15th, 2022

Discoveries


Delivery systems of plasmid DNA and messenger RNA for advanced therapies April 15th, 2022


Injectable stem cell assembly for cartilage regeneration April 15th, 2022


Graphene-hBN breakthrough to spur new LEDs, quantum computing: Study uncovers first method for producing high-quality, wafer-scale, single-layer hexagonal boron nitride April 15th, 2022


Achieving higher performance with potassium ion battery April 15th, 2022

Announcements


Scientists develop indoor-active photocatalyst for antiviral coating against various variant types of novel coronavirus SARS-CoV-2 April 15th, 2022


First hybrid quantum bit based on topological insulators: Scientists at Forschungszentrum Jülich take an important step on the path towards topological quantum computers April 15th, 2022


Flexible quantum sieve made at TU Dresden filters the fuel of Starship Enterprise April 15th, 2022


Photocatalysts with built-in electric field helps to remove pollutants from water April 15th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Scientists develop indoor-active photocatalyst for antiviral coating against various variant types of novel coronavirus SARS-CoV-2 April 15th, 2022


First hybrid quantum bit based on topological insulators: Scientists at Forschungszentrum Jülich take an important step on the path towards topological quantum computers April 15th, 2022


Flexible quantum sieve made at TU Dresden filters the fuel of Starship Enterprise April 15th, 2022


Photocatalysts with built-in electric field helps to remove pollutants from water April 15th, 2022

Environment


New approach can predict pollution from cooking emissions April 15th, 2022


Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021


Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021


Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Water


Photocatalysts with built-in electric field helps to remove pollutants from water April 15th, 2022


Three dimensional Mn-doped NixSy/Ni2P and Mn-doped Ni2O3/Ni2P nanosheets as efficient electrocatalysts for alkaline overall water splitting April 8th, 2022


Researchers redefine how liquid and solid layers stick together based on molecular forces: New study reveals how intermolecular forces inform the design of smart materials April 8th, 2022


A single molecule makes a big splash in the understanding of the two types of water January 7th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *