Nanotechnology Now – Press Release: Journal of Pharmaceutical Analysis publishes method for the fast detection of a key antiviral: Researchers from China demonstrate a novel nanobody-based detection of recombinant human interferon α2b using a strip test


Home > Press > Journal of Pharmaceutical Analysis publishes method for the fast detection of a key antiviral: Researchers from China demonstrate a novel nanobody-based detection of recombinant human interferon α2b using a strip test

Development of novel-nanobody-based lateral-flow Immunochromatographic strip test for rapid detection of recombinant human interferon α2b.
CREDIT
Journal of Pharmaceutical Analysis
Development of novel-nanobody-based lateral-flow Immunochromatographic strip test for rapid detection of recombinant human interferon α2b.
CREDIT
Journal of Pharmaceutical Analysis

Abstract:
Interferons are proteins that constitute an important part of our natural defense systems. These proteins also exhibit a remarkable antiviral activity. The recombinant human interferon α2b (rhIFNα2b) was approved by the U.S. Food and Drug Administration in 1986. It has been used ever since as an antiviral agent for the treatment of hepatitis B and hepatitis C. Despite its widespread applications, however, there remains an issue: the detection of rhIFNα2b is tedious and time-consuming.

Journal of Pharmaceutical Analysis publishes method for the fast detection of a key antiviral: Researchers from China demonstrate a novel nanobody-based detection of recombinant human interferon α2b using a strip test


Beilin, China | Posted on June 10th, 2022

Against this backdrop, researchers from China, in a new study, recently developed a novel method for the fast and efficient detection of rhIFNα2b. This paper was made available online on 8 July 2021 and was published in Volume 12 Issue 2 of the Journal of Pharmaceutical Analysis in 30 April 2022.

To achieve this, they immobilized a novel “nanobody” on a paper strip. The nanobody used in this method was originally derived from an Alpaca—a species of the South American camelid mammal. Subsequently, it was generated in the research laboratory using recombinant DNA technology—a technique used to “subclone” DNA fragments in order to obtain high quantities of synthetic proteins. This is usually achieved using bacteria or other prokaryotic cells. A “nanobody” is a functional fragment of a larger antibody. As the immobilized novel nanobody binds rhIFNα2b tightly and with high specificity, it was used for a rapid and fool-proof detection of rhIFNα2b.

According to Dr. Junzhi Wang, “Owing to the advantages of nanobodies in reagent preservation, production, and cost, the lateral flow immunochromatography assay using nanobodies has a high potential to replace traditional antibody-based ligand-binding assays for a rapid identification test of recombinant protein therapeutics.”

The research team characterized the binding for the I22-rhIFNα2b interaction, i.e. binding between nanobody 122 and rhIFNα2b, using an Octet platform. The obtained data clearly indicated a tight binding. The binding specificity was further validated using Western blotting, a technique used to detect proteins using protein-specific antibodies.

“The rhIFNα2b products currently available in China include injections, injection powders, gels, and pastes. The immunochromatography strips can only be used to evaluate liquids or products in powder form that can be dissolved and applied to the strips. This is because the product needs to diffuse along the strip via capillary action; gels and pastes do not satisfy this requirement,” explains Dr. Wang.

Quite interestingly, the developed rhIFNa2b detection assay has a detection limit of 1 µg/mL, which is lower than the existing limits. This makes it a more sensitive lab-based technique for rapid identification of rhIFNα2b. Another big advantage is the use of nanobodies for protein detection. This is because nanobodies can be obtained in an economical manner by harvesting inexpensive bacterial cells. Moreover, large volumes of nanobodies can be obtained with relative ease using routinely used laboratory techniques.

Dr. Wang summarizes, “The operation time of rhIFNα2b identification was shortened from two days to a few minutes with our test. It can, therefore, meet the needs for rapid detection of this family of recombinant protein products on the market and provide a good foundation for improving the efficiency of market counterfeit detection. In the future, rapid detection could be carried out in an all-round manner.”

In summary, the newly developed method could pave the way for smoother, faster, and accurate detection of recombinant or artificially generated proteins, making for early diagnosis and treatment of hepatitis.

####

For more information, please click here

Contacts:
Fen Qiu
Journal of Pharmaceutical Analysis

Office: +86-131-5206-8068

Copyright © Cactus Communications

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Reference

News and information


University of Illinois Chicago joins Brookhaven Lab’s Quantum Center June 10th, 2022


Chung-Ang University researchers use biomolecule-loaded metal-organic frameworks nanopatterns to aid artificial stem cell differentiation: A new platform mimics live cellular environment to guide stem cell differentiation outside the body without needing complex experimental step June 10th, 2022


Organic water splitters get a boost June 10th, 2022


Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

Possible Futures


Electron-phonon coupling assisted universal red luminescence of o-phenylenediamine-based CDs June 10th, 2022


Marching to the Cadence of Electronics: Innovation A new paper in Nature validates technology developed by John Bowers and collaborators June 10th, 2022


Small materials may be key to reducing cardiovascular disease deaths, researchers say June 10th, 2022


Decoding a key part of the cell, atom by atom June 10th, 2022

Nanomedicine


Electron-phonon coupling assisted universal red luminescence of o-phenylenediamine-based CDs June 10th, 2022


Small materials may be key to reducing cardiovascular disease deaths, researchers say June 10th, 2022


Decoding a key part of the cell, atom by atom June 10th, 2022


Chung-Ang University researchers use biomolecule-loaded metal-organic frameworks nanopatterns to aid artificial stem cell differentiation: A new platform mimics live cellular environment to guide stem cell differentiation outside the body without needing complex experimental step June 10th, 2022

Discoveries


Electron-phonon coupling assisted universal red luminescence of o-phenylenediamine-based CDs June 10th, 2022


Marching to the Cadence of Electronics: Innovation A new paper in Nature validates technology developed by John Bowers and collaborators June 10th, 2022


Small materials may be key to reducing cardiovascular disease deaths, researchers say June 10th, 2022


Decoding a key part of the cell, atom by atom June 10th, 2022

Announcements


Chung-Ang University researchers use biomolecule-loaded metal-organic frameworks nanopatterns to aid artificial stem cell differentiation: A new platform mimics live cellular environment to guide stem cell differentiation outside the body without needing complex experimental step June 10th, 2022


Organic water splitters get a boost June 10th, 2022


Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022


Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Decoding a key part of the cell, atom by atom June 10th, 2022


Chung-Ang University researchers use biomolecule-loaded metal-organic frameworks nanopatterns to aid artificial stem cell differentiation: A new platform mimics live cellular environment to guide stem cell differentiation outside the body without needing complex experimental step June 10th, 2022


Organic water splitters get a boost June 10th, 2022


Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

Nanobiotechnology


Electron-phonon coupling assisted universal red luminescence of o-phenylenediamine-based CDs June 10th, 2022


Small materials may be key to reducing cardiovascular disease deaths, researchers say June 10th, 2022


Decoding a key part of the cell, atom by atom June 10th, 2022


Chung-Ang University researchers use biomolecule-loaded metal-organic frameworks nanopatterns to aid artificial stem cell differentiation: A new platform mimics live cellular environment to guide stem cell differentiation outside the body without needing complex experimental step June 10th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *