Nanotechnology Now – Press Release: Building blocks of the future for photovoltaics: Research team led by Göttingen University observes formation of “dark” moiré interlayer excitons for the first time


Home > Press > Building blocks of the future for photovoltaics: Research team led by Göttingen University observes formation of “dark” moiré interlayer excitons for the first time

Artistic representation showing the twisted layers of tungsten diselenide (top) and molybdenum disulphide (bottom). Following excitation using light, a multitude of optically “dark” excitons form between the layers. These “dark” excitons are electron-hole pairs bound by Coulomb interaction (light and dark spheres connected by field lines), which cannot be directly observed using visible light. One of the most interesting quasiparticles is the "moiré interlayer exciton" – shown in the middle of the image - in which the hole is located in one layer and the electron in the other. The formation of these excitons on the femtosecond time scale and the influence of the Moiré potential (illustrated by peaks and troughs in the layers) were investigated in the current study using femtosecond photoemission momentum microscopy and quantum mechanical theory.
CREDIT
Brad Baxley, Part to Whole, LLC
Artistic representation showing the twisted layers of tungsten diselenide (top) and molybdenum disulphide (bottom). Following excitation using light, a multitude of optically “dark” excitons form between the layers. These “dark” excitons are electron-hole pairs bound by Coulomb interaction (light and dark spheres connected by field lines), which cannot be directly observed using visible light. One of the most interesting quasiparticles is the “moiré interlayer exciton” – shown in the middle of the image – in which the hole is located in one layer and the electron in the other. The formation of these excitons on the femtosecond time scale and the influence of the Moiré potential (illustrated by peaks and troughs in the layers) were investigated in the current study using femtosecond photoemission momentum microscopy and quantum mechanical theory.
CREDIT
Brad Baxley, Part to Whole, LLC

Abstract:
An international research team led by the University of Göttingen has, for the first time, observed the build-up of a physical phenomenon that plays a role in the conversion of sunlight into electrical energy in 2D materials. The scientists succeeded in making quasiparticles – known as dark Moiré interlayer excitons – visible and explaining their formation using quantum mechanics. The researchers show how an experimental technique newly developed in Göttingen, femtosecond photoemission momentum microscopy, provides profound insights at a microscopic level, which will be relevant to the development of future technology. The results were published in Nature.

Building blocks of the future for photovoltaics: Research team led by Göttingen University observes formation of “dark” moiré interlayer excitons for the first time


Göttingen, Germany | Posted on August 19th, 2022

Atomically thin structures made of two-dimensional semiconductor materials are promising candidates for future components in electronics, optoelectronics and photovoltaics. Interestingly, the properties of these semiconductors can be controlled in an unusual way: like Lego bricks, the atomically thin layers can be stacked on top of each other. However, there is another important trick: while Lego bricks can only be stacked on top – whether directly or twisted at an angle of 90 degrees – the angle of rotation in the structure of the semiconductors can be varied. It is precisely this angle of rotation that is interesting for the production of new types of solar cells. However, although changing this angle can reveal breakthroughs for new technologies, it also leads to experimental challenges. In fact, typical experimental approaches have only indirect access to the moiré interlayer excitons, therefore, these excitons are commonly termed “dark” excitons. “With the help of femtosecond photoemission momentum microscopy, we actually managed to make these dark excitons visible,” explains Dr. Marcel Reutzel, junior research group leader at the Faculty of Physics at Göttingen University. “This allows us to measure how the excitons are formed at a time scale of a millionth of a millionth of a millisecond. We can describe the dynamics of the formation of these excitons using quantum mechanical theory developed by Professor Ermin Malic’s research group at Marburg.”

“These results not only give us a fundamental insight into the formation of dark Moiré interlayer excitons, but also open up a completely new perspective to enable scientists to study the optoelectronic properties of new and fascinating materials,” says Professor Stefan Mathias, head of the study at Göttingen University’s Faculty of Physics. “This experiment is ground-breaking because, for the first time, we have detected the signature of the Moiré potential imprinted on the exciton, that is, the impact of the combined properties of the two twisted semiconductor layers. In the future, we will study this specific effect further to learn more about the properties of the resulting materials.”

This research was made possible thanks to the German Research Foundation (DFG) who provided Collaborative Research Centre funding for the CRCs “Control of Energy Conversion on Atomic Scales” and “Mathematics of Experiment” in Göttingen, and the CRC “Structure and Dynamics of Internal Interfaces” in Marburg.

####

For more information, please click here

Contacts:
Melissa Sollich
University of Göttingen

Office: 49-551-392-6228

Copyright © University of Göttingen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Original publication: Schmitt et al. “Formation of moiré interlayer excitons in space and time”, Nature 2022. DOI: 10.1038/s41586-022-04977-7:

News and information


Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors – Signal transduction probably occurs after receptor enrichment August 19th, 2022


Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022


Scientists unravel ‘Hall effect’ mystery in search for next generation memory storage devices August 19th, 2022


Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Possible Futures


New chip ramps up AI computing efficiency August 19th, 2022


Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022


Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022


U-M researchers untangle the physics of high-temperature superconductors August 19th, 2022

Discoveries


Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022


Scientists unravel ‘Hall effect’ mystery in search for next generation memory storage devices August 19th, 2022


Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022


Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they’re still on the electron microscope August 19th, 2022

Announcements


Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022


Scientists unravel ‘Hall effect’ mystery in search for next generation memory storage devices August 19th, 2022


Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022


Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they’re still on the electron microscope August 19th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Exploring quantum electron highways with laser light: Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. August 19th, 2022


Scientists unravel ‘Hall effect’ mystery in search for next generation memory storage devices August 19th, 2022


Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022


Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they’re still on the electron microscope August 19th, 2022

Energy


Generating power where seawater and river water meet July 22nd, 2022


At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022


A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022


Novel compound boosts urea to sustainable energy reaction process, researchers report: Integrating energy-saving hydrogen production with urea electrooxidation over crystalline-amorphous NiO-CrOx electrocatalyst July 15th, 2022

Solar/Photovoltaic


At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022


Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022


Key in increasing efficiency of next-generation solar cell, found in ‘light absorption capacity’! July 1st, 2022


Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *