Nanotechnology Now – Press Release: ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer


Home > Press > ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer

Abstract:
ACM Research, Inc. (ACM) (NASDAQ: ACMR), a leading supplier of wafer processing solutions for semiconductor and advanced wafer-level packaging (WLP) applications, today announced that it has expanded its 300mm Ultra Fn furnace dry processing platform with the introduction of its Ultra Fn A furnace tool. The Ultra Fn A system adds thermal atomic layer deposition (ALD) to ACM’s extensive list of supported furnace applications. The company also announced that it has shipped the first Ultra Fn A furnace tool to a top-tier China-based foundry manufacturer. The product is expected to be qualified in 2023.

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer


Fremont, CA | Posted on September 30th, 2022

“As logic nodes continue to shrink, customers are increasingly looking for suppliers that are willing to collaborate to meet their advanced process requirements, like ALD,” said David Wang, CEO and president of ACM. “ALD is one of the fastest growing applications for manufacturing at advanced nodes, making it a critical new capability for our furnace portfolio. ACM’s deep understanding of the entire semiconductor manufacturing process and our innovative capabilities allow us to quickly develop new applications – wet and dry – to meet emerging market requirements. Our new ALD tool builds on our extensive furnace platform, which also includes support for atmospheric, low-pressure and ultra-high vacuum furnace options.”

About ACM’s Ultra Fn A Furnace Tool
ACM’s new thermal ALD tool deposits both silicon nitride (SiN) and silicon carbide nitride (SiCN) films. The initial Ultra Fn A tool is expected to be used to manufacture the side wall spacer layer in a 28nm logic manufacturing flow, a process which demands a very low etch rate and good step coverage. ACM’s Ultra Fn A furnace tool with proprietary technology has achieved an improvement in uniformity in simulations as compared with competitive approaches.

ACM’s Ultra Fn A tool builds on the success of ACM’s Ultra Fn furnace platform, which meets the dry processing challenges of LPCVD, oxidation, ultra-high vacuum anneal for alloy, high temperature and other common furnace processes. The Ultra Fn A furnace tool was designed from the ground-up to meet best-in-class requirements for high-throughput batch ALD processing. It can be easily customized with minor component and layout changes, which contributed to accelerated development of new types of ALD processes. Its innovative design also combines ACM’s proven software technology with new hardware that improves durability and reliability, as well as ACM’s proprietary process-control IP to provide rapid, stable process control.

Learn more about the Ultra Fn Furnace portfolio and supported applications.

####

About ACM Research, Inc.
ACM develops, manufactures and sells semiconductor process equipment for single-wafer or batch wet cleaning, electroplating, stress-free polishing and thermal processes, which are critical to advanced semiconductor device manufacturing and wafer-level packaging. The company is committed to delivering customized, high-performance, cost-effective process solutions that semiconductor manufacturers can use in numerous manufacturing steps to improve productivity and product yield. For more information, visit www.acmrcsh.com.

© ACM Research, Inc. The ACM Research logo is a trademark of ACM Research, Inc. For convenience, this trademark appears in this press release without a ™ symbol, but that practice does not mean that ACM will not assert, to the fullest extent under applicable law, its rights to such trademark.

For more information, please click here

Contacts:
Media Contact: Company Contacts:
Jillian Carapella USA
Kiterocket Robert Metter
+1 646.402.2408 ACM Research, Inc.
+1 503.367.9753

China
Xi Wang
ACM Research (Shanghai), Inc.
+86 21 50808868

Korea
YY Kim
ACM Research (Korea), Inc.
+821041415171

Taiwan
David Chang
+886 921999884

Singapore
Adrian Ong
+65 8813-1107

Copyright © ACM Research, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

News and information


Drawing data in nanometer scale September 30th, 2022


Researchers unveil mystery inside Li- o2 batteries September 30th, 2022


Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022


Exquisitely thin membranes can slash energy spent refining crude oil into fuel and plastic: Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil September 30th, 2022

Possible Futures


Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022


Drawing data in nanometer scale September 30th, 2022


Researchers unveil mystery inside Li- o2 batteries September 30th, 2022


Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Chip Technology


Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022


Upgrading your computer to quantum September 23rd, 2022


Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022


Reduced power consumption in semiconductor devices September 23rd, 2022

Announcements


Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022


Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022


Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022


Exquisitely thin membranes can slash energy spent refining crude oil into fuel and plastic: Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil September 30th, 2022

Tools


An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022


Atomic level deposition to extend Moore’s law and beyond July 15th, 2022


Nano-rust: Smart additive for autonomous temperature control: FAU researchers develop a new, versatile method for temperature monitoring in materials July 8th, 2022


New technology helps reveal inner workings of human genome June 24th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *