Home > Press > The dense potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density
Scientists at SIT and University of Normandie developed bulk MgB2 with promising superconductivity. This picture shows unreacted magnesium oxide and boron in the matrix of MgB2, and the inset shows energy dispersive x-ray spectroscopy curves for boron, oxygen, and magnesium.
CREDIT Muralidhar Miryala from SIT, Japan and Prof. Jacques G. Noudem from UN, France |
Abstract:
From superfast magnetic levitation trains and computer chips to magnetic resonance imaging (MRI) machines and particle accelerators, superconductors are electrifying various aspects of our life. Superconductivity is an interesting property that allows materials to transfer moving charges without any resistance, below a certain critical point. This implies that superconducting materials can transfer electrical energy in a highly efficient manner without loss in the form of heat, unlike many conventional conductors.
The dense potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density
Shibaura, Japan | Posted on October 7th, 2022
Almost two decades ago scientists discovered superconductivity in a new materialmagnesium diboride, or MgB2. There has been a resurgence in the of popularity MgB2 due to its low cost, superior superconducting abilities, high critical current density (which means that compared to other materials, MgB2 remains a semiconductor even when larger amounts of electric current is passed through it), and trapped magnetic fields arising from strong pinning of the vorticeswhich are cylindrical current loops or tubes of magnetic flux that penetrate a superconductor. The intermetallic MgB2 also allows adjustability of its properties. For instance, the critical current density values (Jc) of MgB2 can be improved by decreasing the grain size and increasing the number of grain boundaries. Such adjustability is not observed in conventional layered superconductors.
To widen the applications of MgB2, however, there is a need to simplify the method of its preparation. Recently, a team of researchers embarked on a journey to do so. They fabricated a novel bulk MgB2 via a process called spark plasma sintering (SPS). In their recent article, published first on 27 July 2022 in Nanomaterials, Prof. Muralidhar Miryala from Shibaura Institute of Technology (SIT), Japan, who led the group, explains Spark plasma sintering (SPS) is a very interesting techniqueit is a rapid consolidation method, where powder is turned into a dense solid. The heat source in this procedure is not external but is an electric current that flows across the die, causing the powder to sinter into a bulk material. The sintering kinetics can be understood and controlled better with SPS. Unlike other similar techniques, it allows grain growth control. Whats more, it also has a shorter processing time!
Prof. Miryala and Prof. Jacques G. Noudem (from the University of Normandie, France) had used this unconventional method to prepare bulk samples of MgB2. The resultant material had excellent superconducting properties and a density that reached 95% of what was theoretically predicted for the material. The study team included Prof. Pierre Bernstein and Yiteng Xing, who is a double degree Ph.D. student at SIT and the University of Normandie.
To synthesize the bulk MgB2, the team loaded two powdersmagnesium and amorphous boroninto a tungsten carbide (WC) mold and sintered them using SPS at different temperatures ranging from 500750°C, and pressure ranging from 260300 megapascal (MPa), then cooled the formed material. The total processing time was about 100 minutes. The team then analyzed the density and the structural properties of the prepared material, using various imaging and testing methods.
Their experiments revealed that the material had a very high density of 2.46 g/cm3 and a high packing factor of 95% (indicating that the atoms in the bulk material were situated very close to each other). It also showed the presence of nano-grains and a large number of grain boundaries. Moreover, it did not exhibit Mg-depleted phases like MgB4. Electromagnetic characterization of the material showed that it exhibited an extremely high Jc of up to 6.75 105 ampere/cm2 at about -253°C. This means that even at that high a current density, the bulk MgB2 made by the team would act as a superconductor. Its Jc was quite remarkable for pure, undoped MgB2, commented Prof. Miryala.
Curious as to how the material exhibited such excellent properties, the team dug deeper. They concluded that the prepared MgB2s superconducting properties were due to its high density, excellent grain connectivity (due to no Mg-depleted phases), and the strong pinning of vortices availed by the presence of nano-grains and grain boundaries.
This study provided a new way to improve the properties of superconducting materials like MgB2. Given this materials high Jc, it can be used in liquid hydrogen-cooled technology. It is also emerging as a promising candidate for liquid hydrogen-based transportation, storage, and fuel systems. Global warming is one of the major threats humanity is facing today and shifting to a renewable energy economy is one of the most effective solutions to this problem. Given the materials potential use in liquid hydrogen systems and its excellent structural and superconducting properties, our work is a positive step towards the realization of greener technology, concludes Prof. Miryala.
A hope for a sustainable and greener tomorrow indeed!
####
About Shibaura Institute of Technology
Shibaura Institute of Technology (SIT) is a private university with campuses in Tokyo and Saitama. Since the establishment of its predecessor, Tokyo Higher School of Industry and Commerce, in 1927, it has maintained learning through practice as its philosophy in the education of engineers. SIT was the only private science and engineering university selected for the Top Global University Project sponsored by the Ministry of Education, Culture, Sports, Science and Technology and will receive support from the ministry for 10 years starting from the 2014 academic year. Its motto, Nurturing engineers who learn from society and contribute to society, reflects its mission of fostering scientists and engineers who can contribute to the sustainable growth of the world by exposing their over 8,000 students to culturally diverse environments, where they learn to cope, collaborate, and relate with fellow students from around the world.
Website: https://www.shibaura-it.ac.jp/en/
About Professor Muralidhar Miryala from SIT, Japan
Dr. Muralidhar Miryala is a Professor at the College of Engineering/Graduate School of Science and Engineering and the Board of Councilors at Shibaura Institute of Technology. His main area of research is solid state physics and materials s cience, with a special focus on materials for energy and the environment, especially high-temperature superconductors. He has published over 500 research items, including patents, books, review articles, articles, press releases, etc. He has received several awards for his research contributions, including the prestigious 2021 Pravasi Bharatiya Samman Award from the President of India and the SIT Excellent Education Award (2021) by the Chairman of the Board of Directors.
Funding Information
This study was partly supported by the Shibaura Institute of Technology (SIT) International Research Center for Green Electronics and Grant-in-Aid FD research budget code: 721MA56383.
For more information, please click here
Contacts:
Wang Yu
Shibaura Institute of Technology
Copyright © Shibaura Institute of Technology
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Superconductivity
NISTs superconducting hardware could scale up brain-inspired computing October 7th, 2022
News and information
Disposable electronics on a simple sheet of paper October 7th, 2022
Taking salt out of the water equation October 7th, 2022
The battery that runs 630 km on a single charge October 7th, 2022
Possible Futures
Underwater movement sensor alerts when a swimmer might be drowning October 7th, 2022
NISTs superconducting hardware could scale up brain-inspired computing October 7th, 2022
Discoveries
Disposable electronics on a simple sheet of paper October 7th, 2022
Taking salt out of the water equation October 7th, 2022
The battery that runs 630 km on a single charge October 7th, 2022
Announcements
Disposable electronics on a simple sheet of paper October 7th, 2022
Taking salt out of the water equation October 7th, 2022
The battery that runs 630 km on a single charge October 7th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Disposable electronics on a simple sheet of paper October 7th, 2022
Taking salt out of the water equation October 7th, 2022
The battery that runs 630 km on a single charge October 7th, 2022
Automotive/Transportation
The battery that runs 630 km on a single charge October 7th, 2022
Silicon image sensor that computes: Device speeds up, simplifies image processing for autonomous vehicles and other applications August 26th, 2022
Dielectric metalens speed up the development of miniaturized imaging systems August 26th, 2022
Fuel Cells
Scavenger nanoparticles could make fuel cell-powered vehicles a reality April 1st, 2022
Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022