Nanotechnology Now – Press Release: Underwater movement sensor alerts when a swimmer might be drowning


Home > Press > Underwater movement sensor alerts when a swimmer might be drowning

An underwater movement sensor attached to a motorized swimming doll’s knee alerts a smartphone app when the doll stops kicking, simulating a swimmer in distress.

CREDIT
Adapted from ACS Nano 2022, DOI: 10.1021/acsnano.2c08325
An underwater movement sensor attached to a motorized swimming doll’s knee alerts a smartphone app when the doll stops kicking, simulating a swimmer in distress.

CREDIT
Adapted from ACS Nano 2022, DOI: 10.1021/acsnano.2c08325

Abstract:
Many flexible fitness trackers can’t be submerged in water because the coatings required to completely seal these devices would make them uncomfortable to wear. Now, researchers reporting in ACS Nano have applied a thin, slippery coating to conductive fabric, creating a breathable underwater movement sensor. They integrated the sensor into a smart device that wirelessly alerts a smartphone app when a swimmer stops moving, an indication that they could be drowning.

Underwater movement sensor alerts when a swimmer might be drowning


Washington, DC | Posted on October 7th, 2022

Underwater movement sensors could have many applications, such as monitoring heart rate and tracking swimmers’ activity and safety. However, current methods to protect these electronics make the devices thick and impermeable to air, which could lead to skin irritation. Previous research, though, has shown that thin, even layers of polydimethylsiloxane (PDMS) provide enough water repulsion to protect flexible movement sensors underwater, but it’s unclear whether the coating would be comfortable. So, Jianying Huang, Cheolmin Park, Yuekun Lai and colleagues wanted to test PDMS as a water-repellent coating for a fabric-based sensor that would be part of a wireless underwater movement detection system.

To do this, the researchers dipped a piece of polyester knit fabric into a graphene oxide solution and then into hydroiodic acid. The last immersion was into a solution containing PDMS microparticles and nanoparticles. Initial tests showed that the coated fabric was conductive and water-repellent, yet still permeable to air, suggesting that the material would be comfortable to wear. When a sample of the coated fabric was attached to a person’s finger that was then bent while underwater, it produced a measurable electrical response.

The team combined the fabric-based sensor with a power supply and a data collector to create a smart underwater movement system that could wirelessly transmit the electrical response to a smartphone app. When the smart device was attached to a motorized swimming doll, the app tracked the doll’s kicking legs. To simulate a swimmer in distress, the doll’s kicking motion was turned off, and the app sent a red warning message. The researchers say that because the smart movement sensor repels water, it could help monitor swimmers’ safety and be used in other types of underwater sensors.

The authors acknowledge funding from the National Natural Science Foundation of China, the Natural Science Funds for Distinguished Young Scholars of Fujian Province, the Natural Science Foundation of Fujian Province, the 111 Project, the China National Textile and Apparel Council Key Laboratory of Flexible Devices for Intelligent Textile and Apparel, Soochow University, the State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF).

####

About American Chemical Society
The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact

Follow us: Twitter | Facebook | LinkedIn | Instagram

For more information, please click here

Contacts:
ACS Newsroom
American Chemical Society

Katie Cottingham
American Chemical Society

Office: 202-236-5115

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information


The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022


Taking salt out of the water equation October 7th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Wearable electronics


Disposable electronics on a simple sheet of paper October 7th, 2022

Govt.-Legislation/Regulation/Funding/Policy


NIST’s superconducting hardware could scale up brain-inspired computing October 7th, 2022


Nanoscope received NIH support for its first-in-class engineered mechanosensitive channel based gene therapy for glaucoma: Nanoscope received Direct Phase II SBIR grant from National Institutes of Health (NIH) for developing an innovative approach to autonomously regulate pressur October 7th, 2022


Boron nitride with a twist could lead to new way to make qubits: Easy control over bright emissions from the crystalline material offer a route toward scalable quantum computing and sensing October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022

Possible Futures


Scientists design electrolyte for lithium metal anodes for use in lithium metal batteries: Potential applications in metal battery systems that provide large-scale, sustainable energy October 7th, 2022


NIST’s superconducting hardware could scale up brain-inspired computing October 7th, 2022


Nanoscope received NIH support for its first-in-class engineered mechanosensitive channel based gene therapy for glaucoma: Nanoscope received Direct Phase II SBIR grant from National Institutes of Health (NIH) for developing an innovative approach to autonomously regulate pressur October 7th, 2022


Boron nitride with a twist could lead to new way to make qubits: Easy control over bright emissions from the crystalline material offer a route toward scalable quantum computing and sensing October 7th, 2022

Discoveries


The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022


Taking salt out of the water equation October 7th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Announcements


The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022


Taking salt out of the water equation October 7th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022


Taking salt out of the water equation October 7th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Safety-Nanoparticles/Risk management


New protocol for assessing the safety of nanomaterials July 1st, 2022


Nylon cooking bags, plastic-lined cups can release nanoparticles into liquids April 22nd, 2022


Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021


No nanoparticle risks to humans found in field tests of spray sunscreens December 2nd, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records


Drawing data in nanometer scale September 30th, 2022


Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022


Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity August 26th, 2022


Understanding outsize role of nanopores: New research reveals differences in pH, and more, about these previously mysterious environments August 26th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *