Nanotechnology Now – Press Release: Physicists from the University of Warsaw and the Military University of Technology have developed a new photonic system with electrically tuned topological features


Home > Press > Physicists from the University of Warsaw and the Military University of Technology have developed a new photonic system with electrically tuned topological features

Electrically tuned Berry curvature and strong light-matter coupling in the liquid crystal cavity with perovskite at room temperature” (visualisation: Mateusz Krol, source: Faculty of Physics, University of Warsaw)

CREDIT
Mateusz Krol, source: Faculty of Physics, University of Warsaw
Electrically tuned Berry curvature and strong light-matter coupling in the liquid crystal cavity with perovskite at room temperature” (visualisation: Mateusz Krol, source: Faculty of Physics, University of Warsaw)

CREDIT
Mateusz Krol, source: Faculty of Physics, University of Warsaw

Abstract:
Scientists from the Faculty of Physics at the University of Warsaw in cooperation with the Military University of Technology, the Italian CNR Nanotec, the British University of Southampton and the University of Iceland obtained a new photonic system with electrically tuned topological features, constructed of perovskites and liquid crystals. You can read about the discovery, that can be used in the creation of efficient and unconventional light sources, in the latest “Science Advances”.

Physicists from the University of Warsaw and the Military University of Technology have developed a new photonic system with electrically tuned topological features


Warsaw, Poland | Posted on October 14th, 2022

Perovskites are materials that have a chance to revolutionize energy. These are durable and easy-to-produce materials, the special property of which is a high solar light absorption coefficient and therefore are used to build new, more efficient photovoltaic cells. In recent years, the emission properties of these materials, so far underestimated, have been used.

– We noticed that two-dimensional perovskites are very stable at room temperature, have high exciton binding energy and high quantum efficiency – describes PhD student Karolina Lempicka-Mirek from the Faculty of Physics at the University of Warsaw, the first author of the publication – These special properties can be used in the construction of efficient and unconventional light sources. This is important for applications in new photonic systems. – In particular, it is planned to use perovskites for information processing with high energy efficiency – adds Barbara Pietka, researcher from University of Warsaw.

Scientists managed to create a system in which excitons in a two-dimensional perovskite were strongly coupled with photons trapped in a birefringent photonic structure: a two-dimensional optical cavity filled with a liquid crystal. – In such a regime, new quasiparticles are created: excitonic polaritons, which are known primarily for the possibility of phase transition to non-equilibrium Bose-Einstein condensate, the formation of superfluid states at room temperature and strong light emission similar to laser light – explains Barbara Pietka.

– Our system turned out to be an ideal platform for creating photonic energy bands with non-zero Berry curvature and studying optical spin-orbit effects mimicking those previously observed in semiconductor physics at cryogenic temperatures – explains Mateusz Krol PhD student from the Faculty of Physics at the University of Warsaw. – In this case, we recreated the Rashba-Dresselhaus spin-orbit coupling in the strong light-matter coupling regime at room temperature.

– The generation of a polariton band with a non-zero Berry curvature was possible thanks to designing a special twist of the liquid crystal molecules at the surface of the mirrors – explains the co-author of the study, Wiktor Piecek from the Military University of Technology, where the tested optical cavities were fabricated.

– Berry curvature describes quantitatively the topological properties of energy bands in materials such as 3D topological insulators, Weil semi-metals and Dirac materials – explains Helgi Sigurdsson from the University of Iceland. – It plays primarily a key role in anomalous transport and the quantum Hall effect. In recent years, many ground-breaking experiments have been carried out in the design and study of geometric and topological energy bands in ultracold atomic gasses and photonics.

– The photonic structure developed in this work, using the spin-orbit coupling and the properties of polaritons, opens the way to study the topological states of light fluids at room temperature – explains Jacek Szczytko from the Faculty of Physics at the University of Warsaw. – Moreover, it can be used in optical neuromorphic networks, where precise control over nonlinear properties of photons is necessary – adds Barbara Pietka.

An international team of scientists conducted research supported, among others, by the National Science Center (grants 2017/27/B/ST3/00271, 2018/31/N/ST3/03046), NAWA Canaletto grant PPN/BIT/2021/1/00124/U/00001, European Union FET-Open program Horizon 2020, grant “TopoLight” (964770).

####

About University of Warsaw, Faculty of Physics
Physics and astronomy at the University of Warsaw appeared in 1816 as part of the then Faculty of Philosophy. In 1825, the Astronomical Observatory was established. Currently, the Faculty of Physics at the University of Warsaw consists of the following institutes: Experimental Physics, Theoretical Physics, Geophysics, the Department of Mathematical Methods and the Astronomical Observatory. The research covers almost all areas of modern physics, on scales from quantum to cosmological. The Faculty’s research and teaching staff consist of over 200 academic teachers, 81 of whom are professors. About 1,000 students and over 170 doctoral students study at the Faculty of Physics at the University of Warsaw.

For more information, please click here

Contacts:
Media Contact

Agata Meissner
University of Warsaw, Faculty of Physics

Office: 225-532-573
Expert Contact

Barbara Pietka
Faculty of Physics University of Warsaw

Office: +48 55 32 764

Copyright © University of Warsaw, Faculty of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information


Changing direction: Research team discovers switchable electronic chirality in an achiral Kagome superconductor October 14th, 2022


Smart materials: metal cations-recognizable thermoresponsive polymers: Osaka Metropolitan University scientists developed a novel polymer, the thermoresponsiveness of which can easily be regulated by changing the type and mixing ratio of ionic species October 14th, 2022


Liquid crystal templated chiral nanomaterials October 14th, 2022


Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

Display technology/LEDs/SS Lighting/OLEDs


Liquid crystal templated chiral nanomaterials October 14th, 2022


Research improves upon conventional LED displays: With new technology, LEDs can be more cost-efficient and last longer September 9th, 2022

Possible Futures


Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers October 14th, 2022


Liquid crystal templated chiral nanomaterials October 14th, 2022


Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022


Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications October 14th, 2022

Chip Technology


Changing direction: Research team discovers switchable electronic chirality in an achiral Kagome superconductor October 14th, 2022


New measurements quantifying qudits provide glimpse of quantum future October 14th, 2022


Arizona State and Zhejiang Universities reach qubit computing breakthrough: Long-Lived Coherent Quantum States in a Superconducting Device for Quantum Information Technology October 14th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Optical computing/Photonic computing


New measurements quantifying qudits provide glimpse of quantum future October 14th, 2022


Conformal optical black hole for cavity September 30th, 2022


“Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon September 23rd, 2022


New road towards spin-polarised currents September 9th, 2022

Discoveries


Smart materials: metal cations-recognizable thermoresponsive polymers: Osaka Metropolitan University scientists developed a novel polymer, the thermoresponsiveness of which can easily be regulated by changing the type and mixing ratio of ionic species October 14th, 2022


Liquid crystal templated chiral nanomaterials October 14th, 2022


Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022


Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022

Announcements


Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022


Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022


Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications October 14th, 2022


New measurements quantifying qudits provide glimpse of quantum future October 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022


Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022


Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications October 14th, 2022


New measurements quantifying qudits provide glimpse of quantum future October 14th, 2022

Photonics/Optics/Lasers


New measurements quantifying qudits provide glimpse of quantum future October 14th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022


“Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon September 23rd, 2022


New road towards spin-polarised currents September 9th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *