Nanotechnology Now – Press Release: 3D-printed decoder, AI-enabled image compression could enable higher-res displays


Home > Press > 3D-printed decoder, AI-enabled image compression could enable higher-res displays

The system uses an algorithm that encodes a high-resolution image to a lower-resolution one, and then translates the compressed image back to its original resolution by a decoder that unscrambles incoming light.

CREDIT
Ozcan Lab/UCLA
The system uses an algorithm that encodes a high-resolution image to a lower-resolution one, and then translates the compressed image back to its original resolution by a decoder that unscrambles incoming light.

CREDIT
Ozcan Lab/UCLA

Abstract:
FINDINGS
A UCLA team has developed a technology for projecting high-resolution computer-generated images using one-sixteenth the number of pixels contained in their source images. The system compresses images based on an artificial intelligence algorithm, and then decodes them using an optical decoder — a thin, translucent sheet of plastic produced using a 3D printer — that is designed to interact with light in a specific way as part of the same algorithm. The decoder consumes no power, which could result in higher-resolution displays that use less power and require less data than current display technologies.

3D-printed decoder, AI-enabled image compression could enable higher-res displays


Los Angeles, CA | Posted on December 9th, 2022

BACKGROUND
Projecting high-resolution 3D holograms requires so many pixels that the task is beyond the reach of current consumer technology. The ability to compress image data and instantly decode compressed images using a thin, transparent material that does not consume power, as demonstrated in the study, could help overcome that barrier and result in wearable technology that produces higher quality images while using less power and storage than today’s consumer technology.

METHOD
The system uses an algorithm that encodes a high-resolution image to a lower-resolution one. The result is a pixelated pattern, similar to a QR code, that is unreadable to the human eye. That compressed image is then translated back to its original resolution by a decoder designed to bend and unscramble the incoming light.

Testing the system on images in black, white and shades of gray, the researchers demonstrated that the technology could effectively project high-resolution images using encoded images with only about 6% of the pixels in the original. The team also tested a similar system that successfully encoded and decoded color images.

IMPACT
The technology could eventually be used for applications like projecting high-resolution holographic images for virtual reality or augmented reality goggles. By encoding images using a fraction of the data contained in the original and decoding them without using electricity, the system could lead to holographic displays that are smaller, less expensive and have faster refresh rates.

The technology could appear in consumer electronics as soon as five years from now, according to the paper’s corresponding author, Aydogan Ozcan, Chancellor’s Professor of Electrical Engineering and Bioengineering, Volgenau Professor of Engineering Innovation at the UCLA Samueli School of Engineering and an associate director of the California NanoSystems Institute at UCLA.

Other potential applications include image encryption and medical imaging.

AUTHORS
The co-first authors of the study are UCLA doctoral students Çağatay Işıl and Deniz Mengu. Mona Jarrahi, UCLA’s Northrop Grumman Professor of Electrical Engineering, is a co-senior author. Additional authors are Yifan Zhao, Anika Tabassum, Jingxi Li and Yi Luo, all of UCLA.

####

For more information, please click here

Contacts:
Nicole Wilkins
California NanoSystems Institute

Cell: 3108696835

Copyright © California NanoSystems Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information


Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022


SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022


Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics December 9th, 2022


Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022

Display technology/LEDs/SS Lighting/OLEDs


Physicists from the University of Warsaw and the Military University of Technology have developed a new photonic system with electrically tuned topological features October 14th, 2022


Liquid crystal templated chiral nanomaterials October 14th, 2022


Research improves upon conventional LED displays: With new technology, LEDs can be more cost-efficient and last longer September 9th, 2022


Scientists take control of magnetism at the microscopic level: Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity August 26th, 2022

3D & 4D printing/Additive-manufacturing


Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022


University of Houston research allows for 3D printing of ‘organic electronics’ Micro-scale organic electronics for use in bioelectronics via multiphoton 3D printers June 24th, 2022


UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022


Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

Govt.-Legislation/Regulation/Funding/Policy


Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022


Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics December 9th, 2022


Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022


New method of reducing carbon dioxide could be a golden solution to pollution December 9th, 2022

Possible Futures


Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022


Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022


SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022


Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics December 9th, 2022

Discoveries


Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022


SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022


Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics December 9th, 2022


Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022

Announcements


Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022


SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022


Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics December 9th, 2022


Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022


SLAC/Stanford researchers discover how a nano-chamber in the cell directs protein folding: The results challenge a 70-year-old theory of how proteins fold in our cells and have profound implications for treating diseases linked to protein misfolding December 9th, 2022


Experimental nanosheet material marks a step toward the next generation of low-power, high-performance electronics December 9th, 2022


Tin selenide nanosheets enables to develop wearable tracking devices December 9th, 2022

Artificial Intelligence


New chip ramps up AI computing efficiency August 19th, 2022


Artificial Intelligence Centered Cancer Nanomedicine: Diagnostics, Therapeutics and Bioethics June 3rd, 2022


‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022


Development of low-power and high-efficiency artificial sensory neurons: 3T-OTS device to simulate the efficient information processing method of the human brain. A green light for the development of sensor-AI combined next-generation artificial intelligence “to be used in life a April 8th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *