Nanotechnology Now – News Story: Boffins manage to keep graphene qubits ‘quantum coherent’ for all of 55… nanoseconds: Doesn’t sound very long, but it could have big implications for quantum computing


Home > News > Boffins manage to keep graphene qubits ‘quantum coherent’ for all of 55… nanoseconds: Doesn’t sound very long, but it could have big implications for quantum computing

January 3rd, 2019

Boffins manage to keep graphene qubits ‘quantum coherent’ for all of 55… nanoseconds: Doesn’t sound very long, but it could have big implications for quantum computing

Abstract:
Physicists have formed qubits – quantum bits – from graphene for the first time, according to research published in Nature Nanotechnology.

The applications of quantum computing are still a little handwavy at the moment, but it all boils down to the creation of qubits.

Source:
theregister.co.uk

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

News and information

The first nanotube applications award honors the scientist revolutionizing Li-ion batteries December 17th, 2019

Growing carbon nanotubes with the right twist: Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth December 13th, 2019

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods December 13th, 2019

Graphene/ Graphite

Growing carbon nanotubes with the right twist: Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth December 13th, 2019

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods December 13th, 2019

Possible Futures

Growing carbon nanotubes with the right twist: Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth December 13th, 2019

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods December 13th, 2019

Tiny magnetic particles enable new material to bend, twist, and grab December 13th, 2019

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

Quantum Computing

A distinct spin on atomic transport: Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics November 8th, 2019

Thorium superconductivity: Scientists discover a new high-temperature superconductor November 8th, 2019

Scientists tame Josephson vortices November 1st, 2019

Small magnets reveal big secrets: Work by international research team could have wide-ranging impact on information technology applications October 28th, 2019

Announcements

The first nanotube applications award honors the scientist revolutionizing Li-ion batteries December 17th, 2019

Growing carbon nanotubes with the right twist: Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth December 13th, 2019

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods December 13th, 2019

Tiny magnetic particles enable new material to bend, twist, and grab December 13th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Growing carbon nanotubes with the right twist: Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth December 13th, 2019

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods December 13th, 2019

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

How to induce magnetism in graphene: Elusive molecule predicted in the 1970s finally synthesized December 11th, 2019

Quantum nanoscience

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

How to induce magnetism in graphene: Elusive molecule predicted in the 1970s finally synthesized December 11th, 2019

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

A distinct spin on atomic transport: Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics November 8th, 2019

Leave a Reply

Your email address will not be published. Required fields are marked *