Nanotechnology Now – Press Release: A new dimension in magnetism and superconductivity launched


Home > Press > A new dimension in magnetism and superconductivity launched

Abrikosov vortices in a superconductor and magnetization configurations in an (anti-)ferromagnet on a Möbius strip (artistic representation) © Helmholtz-Zentrum Dresden-Rossendorf, Germany
Abrikosov vortices in a superconductor and magnetization configurations in an (anti-)ferromagnet on a Möbius strip (artistic representation) © Helmholtz-Zentrum Dresden-Rossendorf, Germany

Abstract:
Traditionally, the primary field, where curvature is playing a pivotal role, is the theory of general relativity. In recent years, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics to chemistry and biology, giving rise to a plethora of emerging domains, such as curvilinear cell biology, semiconductors, superfluidity, optics, plasmonics and 2D van der Waals materials. In modern magnetism, superconductivity and spintronics, extending nanostructures into the third dimension has become a major research avenue because of geometry-, curvature- and topology-induced phenomena. This approach provides a means to improve conventional and to launch novel functionalities by tailoring the curvature and 3D shape.

A new dimension in magnetism and superconductivity launched


Vienna, Austria | Posted on November 5th, 2021

“In recent years, there have appeared experimental and theoretical works dealing with curvilinear and three-dimensional superconducting and (anti-)ferromagnetic nano-architectures. However, these studies originate from different scientific communities, resulting in the lack of knowledge transfer between such fundamental areas of condensed matter physics as magnetism and superconductivity”, says Oleksandr Dobrovolskiy, head of the SuperSpin Lab at the University of Vienna. ”In our group, we lead projects in both these topical areas and it was the aim of our perspective article to build a “bridge” between the magnetism and superconductivity communities, drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities upon solid-state systems”.

“In magnetic materials, the geometrically-broken symmetry provides a new toolbox to tailor curvature-induced anisotropy and chiral responses”, says Denys Makarov, head of the department “Intelligent Materials and Systems” at the Helmholtz-Zentrum Dresden-Rossendorf. “The possibility to tune magnetic responses by designing the geometry of a wire or magnetic thin film, is one of the main advantages of the curvilinear magnetism, which has a major impact on physics, material science and technology. At present, under its umbrella, the fundamental field of curvilinear magnetism includes curvilinear ferro- and antiferromagnetism, curvilinear magnonics and curvilinear spintronics.”

“The key difference in the impact of the curvilinear geometry on superconductors in comparison with (anti-)ferromagnets lies in the underlying nature of the order parameter,” expands Oleksandr Dobrovolskiy. “Namely, in contrast to magnetic materials, for which energy functionals contain spatial derivatives of vector fields, the description of superconductors also relies on the analysis of energy functionals containing spatial derivatives of scalar fields. While in magnetism the order parameter is the magnetization (vector), for a superconducting state the absolute value of the order parameter has a physical meaning of the superconducting energy gap (scalar). In the future, extension of hybrid (anti-)ferromagnet/superconductor structures into the third dimension will enable investigations of the interplay between curvature effects in systems possessing vector and scalar order parameters. Yet, this progress strongly relies on the development of experimental and theoretical methods and the improvement of computation capabilities.”

Challenges for investigations of curvilinear and 3D nanomagnets and superconductors
Generally, effects of curvature and torsion are expected when the sizes or features of the system become comparable with the respective length scales. Among the various nanofabrication techniques, writing of complex-shaped 3D nano-architectures by focused particles beams has exhibited the most significant progress in the recent years, turning these methods into the techniques of choice for basic and applications-oriented studies in 3D nanomagnetism and superconductivity. However, approaching the relevant length scales in the low nm range (exchange length in ferromagnets and superconducting coherence length in nanoprinted superconductors) is still beyond the reach of current experimental capabilities. At the same time, sophisticated techniques for the characterization of magnetic configurations and their dynamics in complex-shaped nanostructures are becoming available, including X-ray vector nanotomography and 3D imaging by soft X-ray laminography. Similar studies of superconductors are more delicate as they require cryogenic conditions, appealing for the development of such techniques in the years to come.

####

For more information, please click here

Contacts:
Veronika Schallhart
University of Vienna

Office: +43-1-4277-175 30
Expert Contact

Oleksandr Dobrovolskiy, Priv.-Doz. Dr. habil.
University of Vienna, Superconductivity and Spintronics laboratory, Nanomagnetism and Magnonics group, Faculty of Physics

Copyright © University of Vienna

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Reaction-dependent coffee-ring-regulating method in spray-coating perovskite November 5th, 2021

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material November 5th, 2021

Magnetism/Magnons

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

2 Dimensional Materials

Two-dimensional hybrid metal halide device allows control of terahertz emissions October 1st, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Superconductivity

A kagome lattice superconductor reveals a “cascade” of quantum electron states: In a rare non-magnetic kagome material, a topological metal cools into a superconductor through a sequence of novel charge density waves October 1st, 2021

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Plasmonics

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

TPU scientists offer new plasmon energy-based method to remove CO2 from atmosphere March 19th, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Experiment takes ‘snapshots’ of light, stops light, uses light to change properties of matter December 25th, 2020

Possible Futures

Quantum Physics in Proteins: Artificial intelligence affords unprecedented insights into how biomolecules work November 5th, 2021

Securing data transfers with relativity: A team from UNIGE has implemented a new way to secure data transfers based on the physical principle of relativity November 5th, 2021

Color-changing indicator predicts algal blooms November 5th, 2021

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Spintronics

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Two-dimensional hybrid metal halide device allows control of terahertz emissions October 1st, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

Chip Technology

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Nanoscale lattices flow from 3D printer: Rice University engineers create nanostructures of glass and crystal for electronics, photonics October 15th, 2021

Discoveries

Securing data transfers with relativity: A team from UNIGE has implemented a new way to secure data transfers based on the physical principle of relativity November 5th, 2021

Color-changing indicator predicts algal blooms November 5th, 2021

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Reaction-dependent coffee-ring-regulating method in spray-coating perovskite November 5th, 2021

Announcements

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Reaction-dependent coffee-ring-regulating method in spray-coating perovskite November 5th, 2021

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material November 5th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Quantum Physics in Proteins: Artificial intelligence affords unprecedented insights into how biomolecules work November 5th, 2021

Securing data transfers with relativity: A team from UNIGE has implemented a new way to secure data transfers based on the physical principle of relativity November 5th, 2021

Quantifying spin for future spintronics: Spin-momentum locking induced anisotropic magnetoresistance in monolayer WTe2 November 5th, 2021

An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material November 5th, 2021

Leave a Reply

Your email address will not be published. Required fields are marked *