Nanotechnology Now – Press Release: A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA


Home > Press > A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA

Abstract:
Jonathan Klamkin, an associate professor in UC Santa Barbara’s Department of Electrical and Computer Engineering, has received the U.S. Defense Advanced Research Projects Agency (DARPA) Director’s Fellowship. The prestigious prize is awarded to only the top performers among recent recipients of the DARPA Young Faculty Award (YFA), a program established to encourage young scientists to pursue high-risk, high-reward research that could result in breakthrough technologies for national security.

A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA


Santa Barbara, CA | Posted on June 23rd, 2020

“We’re extremely proud of professor Klamkin for receiving a Director’s Fellowship,” said Rod Alferness, dean of the UC Santa Barbara College of Engineering. “His work to increase the efficiency of lasers in photonic integrated circuits is a key step toward developing a truly foundational technology for next-generation energy-efficient data centers and optical communication networks that underpin the internet. This is a tremendous recognition of his high-quality and groundbreaking work.”

The initial DARPA Young Faculty Award provided Klamkin up to $500,000 in funding for two years. The fellowship extends his research project by one year and provides up to $250,000 in additional funding to continue his contributions to the photonics revolution.

“While the funding enables our research for another year, the recognition that comes with this highly competitive award is as important,” said Klamkin, one of 36 scientists and engineers in the nation to receive the 2018 YFA. “I’m grateful not only to DARPA and our program mentor, but especially to the students and researchers involved in this project for their continued hard work and enthusiasm.”

Klamkin’s DARPA project, “ASPIC: Attojoule Sources for Photonic Integrated Circuits,” is aimed at addressing energy-consumption issues associated with lasers, the sources of light in photonic integrated circuits (PICs). PICs transfer information with light instead of electricity. Solving efficiency issues is essential if PICs are to be reliable and reach their potential for large-scale integration, similar to what happened with electronic integrated circuits in the mid-20th century, when electronic integrated circuits became a mainstay in computers, medical instruments, sensors and automobiles.

Klamkin, who runs the Integrated Photonics Laboratory at UCSB, says he has been amazed at his team’s progress over the past two years.

“Our program objectives were extremely challenging, and we met or exceeded most of them,” said Klamkin, who joined the UCSB faculty in 2015. “Our mentor encouraged us throughout to explore cutting-edge ideas. I believe this foundation will lead to new research directions in the area of heteroepitaxy of mismatched semiconductor materials and devices.”

Heteroepitaxy refers to a type of crystal growth or material deposition in which new crystalline layers of one material are formed atop a crystalline layer of a different material. The layer-on-layer heterostructure could lead to breakthrough technology. Klamkin’s project aims to deposit compound semiconductors or mismatched silicon, which would enable the integration and production of lasers with large-scale semiconductor manufacturing techniques leveraged by the microelectronics industry.

“During the third year of this project, we will study the fundamental benefits of selective epitaxy and demonstrate novel photonic devices leveraging this technique,” said Klamkin, who has authored or co-authored nearly two hundred papers and holds several patents. “For years, the photonics industry has been constrained by specialty processes and manufacturing techniques. This is such an important field because it impacts how we communicate, sense and process information.

“The work we are doing,” he continued, “could transform the way in which photonic devices are manufactured to enable large-volume applications, including optical interconnects for data centers and high-performance computers, Lidar sensors for facial recognition and autonomous vehicles and quantum communications and sensing.”

####

For more information, please click here

Contacts:
Sonia Fernandez
(805) 893-4765

Shelly Leachman
(805) 893-8726

Copyright © University of California, Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

News and information

Developing new techniques to improve atomic force microscopy June 26th, 2020

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Chemistry paves the way for improved electronic materials June 26th, 2020

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Process for ‘two-faced’ nanomaterials may aid energy, information tech June 26th, 2020

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Teaching physics to neural networks removes ‘chaos blindness’ June 19th, 2020

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

Possible Futures

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Chemistry paves the way for improved electronic materials June 26th, 2020

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates: spin-gapless semiconductors (SGSs) bridge the zero-gap materials and half-metals June 26th, 2020

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Chip Technology

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates: spin-gapless semiconductors (SGSs) bridge the zero-gap materials and half-metals June 26th, 2020

Process for ‘two-faced’ nanomaterials may aid energy, information tech June 26th, 2020

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

EU Team Demonstrates Full Data-Transfer Silicon Photonics Module Delivering 100 Gb/s and Develops Building Blocks for Tb/s: COSMICC Project Breakthroughs ‘Will Answer Tremendous Market Needs with a Target Cost per Bit that Traditional Wavelength-Division Multiplexing Transceivers June 23rd, 2020

Optical computing/Photonic computing

Polymers can fine-tune attractions between suspended nanocubes: Interactions between hollow silica nanocubes suspended in a solution can be adjusted by varying the concentration of polymer molecules added to the mixture. June 19th, 2020

Printed perovskite LEDs: An innovative technique towards a new standard process of electronics manufacturing June 12th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

Announcements

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Chemistry paves the way for improved electronic materials June 26th, 2020

Extensive review of spin-gapless semiconductors: Next-generation spintronics candidates: spin-gapless semiconductors (SGSs) bridge the zero-gap materials and half-metals June 26th, 2020

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Military

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Teaching physics to neural networks removes ‘chaos blindness’ June 19th, 2020

Is teleportation possible? Yes, in the quantum world: Quantum teleportation is an important step in improving quantum computing June 19th, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Excitons form superfluid in certain 2D combos: Rice University researchers find ‘paradox’ in ground-state bilayers June 15th, 2020

Engineers put tens of thousands of artificial brain synapses on a single chip: The design could advance the development of small, portable AI devices June 8th, 2020

New tool helps nanorods stand out: Rice team’s SEMseg method makes nanoparticle analysis quicker and more affordable June 8th, 2020

Photonics/Optics/Lasers

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Polymers can fine-tune attractions between suspended nanocubes: Interactions between hollow silica nanocubes suspended in a solution can be adjusted by varying the concentration of polymer molecules added to the mixture. June 19th, 2020

Transparent graphene electrodes might lead to new generation of solar cells: New roll-to-roll production method could enable lightweight, flexible solar devices and a new generation of display screens June 8th, 2020

New discovery advances optical microscopy: Enables researchers to directly visualize unlabeled objects that have deep sub-wavelength separations June 5th, 2020

Leave a Reply

Your email address will not be published. Required fields are marked *