Nanotechnology Now – Press Release: Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies


Home > Press > Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies

Abstract:
Scientists have made several advances in the design of a class of HIV vaccines that could offer broad protection against the virus, according to four new research papers published this week in Science, Science Translational Medicine, and Science Immunology. “The studies […] exemplify progress in the rational design of [germline-targeting] HIV-1 vaccines, and what is being learned will guide [germline-targeting] programs for inducing [broadly neutralizing antibodies] against other human pathogens,” Rogier Sanders and John Moore write in a related Perspective on the new articles.

Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies


Washington, DC | Posted on May 17th, 2024

As the HIV epidemic enters its fifth decade, scientists have poured time and resources into developing vaccine candidates for the virus. However, health authorities still lack a working, approved vaccine that induces broadly neutralizing antibodies, which can neutralize the most common circulating strains of HIV. One solution involves a process called germline targeting, where scientists use a series of proteins targeted by the immune system (immunogens) to shepherd and “prime” young B cells as they mature in sites called germinal centers, with the goal of coaxing the cells to produce broadly neutralizing antibodies against HIV. In the first paper in Science, Jon Steichen and colleagues tested the protective effects of a new germline-targeting strategy based on the N332-GT5 trimer, a component of the HIV viral envelope. Leveraging cryo-electron microscopy, the team showed that their approach successfully primed and boosted quantities of B cells that secret precursors to BG18 – an anti-HIV broadly neutralizing antibody – in a group of eight rhesus macaques. Taking a different delivery approach in the second Science study, Zhenfei Xie and colleagues demonstrated they could prime B cells with N332-GT5 via mRNA, which they delivered via lipid nanoparticles. When given to humanized mice, the mRNA delivered both the primary immunogen (N332-GT5) and two additional immunogens that further primed the target B cells. Together, these immunogens kickstarted the activation and expansion of B cells that secreted precursors to BG18, with Xie et al. hypothesizing that their strategy could reduce undesirable off-target binding. Meanwhile, in a study in Science Translational Medicine, Christopher Cottrell and colleagues designed a new nanoparticle immunogen as a boost to germline-targeting HIV vaccines. They first primed mice with an immunogen named eOD-Gt8 60mer, which was previously found to induce precursors to anti-HIV, VRC01-class broadly neutralizing antibodies in a phase 1 trial. After priming, Cottrell et al. then vaccinated mice with another immunogen named core-g28v2 60mer (in both protein and mRNA form) as a “first boost.” They found that this prime-boost approach elicited VRC01-class antibodies that were precursors to broadly neutralizing antibodies and neutralized HIV-like pseudoviruses in culture. Finally, in a study in Science Immunology, Xuesong Wang and colleagues showed that they could deliver eOD-Gt8 60mer as an initial priming immunogen via mRNA encapsulated in lipid nanoparticles. The researchers transferred several different humanized B cell lines into mice to mimic the competition between B cells that occurs during immunization. Their priming strategy coaxed B cells to diversify, participate in germinal centers, and acquire mutations and characteristics needed to secrete VRC01-class antibodies. In their related Perspective, Sanders and Moore add that the results provide a strong proof-of-concept for promising germline-targeting approaches, noting that the N332-GT5 trimer is now in a phase 1 trial.

####

For more information, please click here

Contacts:
Media Contact

Science Press Package Team
American Association for the Advancement of Science/AAAS

Expert Contacts

Andrew B. Ward
The Scripps Research Institute

Devin Sok
The Scripps Research Institute

Shane Crotty
The Scripps Research Institute/La Jolla Institute for Immunology/University of California, San Diego

Cell: +1-858-353-2139
William R. Schief
The Scripps Research Institute/Ragon Institute of MGH, MIT, and Harvard/Moderna, Inc.

Facundo D. Batista
The Ragon Institute of Mass General, MIT, and Harvard/Department of Biology, Massachusetts Institute of Technology

Perspective author: Rogier W. Sanders
Amsterdam UMC, University of Amsterdam/Amsterdam Institute for Immunology and Infectious Diseases/Weill Cornell Medicine

Perspective author: John P. Moore
Weill Cornell Medicine

Copyright © American Association for the Advancement of Science/AAAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information


Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024


Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024


Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024


Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Possible Futures


International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024


Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024


Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024


Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanomedicine


Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024


Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024


New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024


Good as gold – improving infectious disease testing with gold nanoparticles April 5th, 2024

Discoveries


Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024


Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024


Finding quantum order in chaos May 17th, 2024


What is “time” for quantum particles? Publication by TU Darmstadt researchers in renowned journal “Science Advances” May 17th, 2024

Announcements


Virginia Tech physicists propose path to faster, more flexible robots: Virginia Tech physicists revealed a microscopic phenomenon that could greatly improve the performance of soft devices, such as agile flexible robots or microscopic capsules for drug delivery May 17th, 2024


Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024


Finding quantum order in chaos May 17th, 2024


Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


International research team uses wavefunction matching to solve quantum many-body problems: New approach makes calculations with realistic interactions possible May 17th, 2024


Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024


Shedding light on perovskite hydrides using a new deposition technique: Researchers develop a methodology to grow single-crystal perovskite hydrides, enabling accurate hydride conductivity measurements May 17th, 2024


Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024

Nanobiotechnology


Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024


New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024


Good as gold – improving infectious disease testing with gold nanoparticles April 5th, 2024


The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Leave a Reply

Your email address will not be published. Required fields are marked *