Nanotechnology Now – Press Release: An artificial intelligence probe help see tumor malignancy


Home > Press > An artificial intelligence probe help see tumor malignancy

A K+ sensitive dual-mode nanoprobe with superior magnetic resonance contrast effect and K+-specific fluorescence imaging performance is developed for non-invasive tumor imaging and malignancy identification via a cascaded ‘AND’ logic operation.
CREDIT
©Science China Press
A K+ sensitive dual-mode nanoprobe with superior magnetic resonance contrast effect and K+-specific fluorescence imaging performance is developed for non-invasive tumor imaging and malignancy identification via a cascaded ‘AND’ logic operation.
CREDIT
©Science China Press

Abstract:
Tumor malignancy identification plays an essential role in clinical management of cancer. Currently, biopsy is the gold standard for malignancy identification in most tumor cases, it is, however, invasive that can cause great discomfort to patients, and potentially increase the risk of distant metastases due to the complex sampling process. With the development of molecular imaging probes, non-invasive medical imaging approaches, such as magnetic resonance imaging (MRI), fluorescence imaging (FI), computed tomography, and ultrasound, etc., have been used for non-invasive tumor diagnosis. Nevertheless, majority of imaging strategies are often dependent on imaging probes that lack specificity for identification of tumor malignancy.

An artificial intelligence probe help see tumor malignancy


Beijing, China | Posted on July 1st, 2022

Considering that necrotic cell death and overexpressed potassium ions (K+) channels are major hallmarks of malignant tumors, but not for benign ones, the extracellular K+ concentration is significantly elevated in the malignant tumor microenvironment compared with that of benign tissue. Based on this, a new research led by Prof. Daishun Ling from Shanghai Jiao Tong University reported a K+-sensitive dual-mode imaging probe (KDMN) to realize real-time tumor imaging while identifying the malignancy.

The KDMN consists of optical K+ indicators embedded in magnetic mesoporous silica nanoparticle, which is subsequently coated with a K+-selective membrane that exclusively permits the passage of K+ while excluding other cations. The KDMNs afford superior MR contrast effect and K+-specific FI performance. Moreover, KDMN-enhanced MRI confers attenuated signals at the tumor sites for effective tumor detection. Meanwhile, KDMN-based K+-sensitive FI provides a significant difference in fluorescence signals between malignant tumors and benign ones because there is an elevated extracellular K+ concentration in the malignant tumor microenvironment. Notably, the integration of KDMN-based MRI and FI via cascaded logic circuit has successfully achieved self-confirmation of dual-mode imaging results, thus allowing reliable and accurate imaging of tumor malignancy.

The study was recently published in National Science Review. The first author is Dr. Qiyue Wang, and the corresponding authors are Prof. Daishun Ling from Shanghai Jiao Tong University and Prof. Fangyuan Li from Zhejiang University. “This is the first demonstration of a K+-sensitive dual-mode imaging probe for MRI/FI-cross-checked diagnosis of tumor malignancy,” Prof. Ling said. “And this ion-sensitive cascaded ‘AND’ logic imaging strategy would pave the way for the development of next-generation imaging probes for highly sensitive and accurate diagnosis of ion dyshomeostasis associated diseases.”

####

For more information, please click here

Contacts:
Media Contact

Bei Yan
Science China Press

Office: 86-10-64015905

Expert Contact

Daishun Ling
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

A K+-sensitive AND-gate dual-mode probe for simultaneous tumor imaging and malignancy identification:

News and information


Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022


Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022


Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Imaging


Snapshot measurement of single nanostructure’s circular dichroism March 25th, 2022


Better understanding superconductors with Higgs spectroscopy Prof. Stefan Kaiser from TU Dresden awarded ERC Consolidator Grant March 18th, 2022


Turning any camera into a polarization camera: Metasurface attachment can be used with almost any optical system, from machine vision cameras to telescopes March 18th, 2022


Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Possible Futures


Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022


Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022


Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022


New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanomedicine


Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022


From outside to inside: A rapid and precise total assessment method for cells: Researchers at Nara Institute of Science and Technology show that using four frequencies of applied voltage can improve the measurement of cell size and shape during impedance cytometry, enabling to en June 24th, 2022


New technology helps reveal inner workings of human genome June 24th, 2022


New nano-gel to protect children receiving chemotherapy from hearing loss June 17th, 2022

Discoveries


Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022


Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022


Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Announcements


Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022


Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022


Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022


Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022


Photon-controlled diode: an optoelectronic device with a new signal processing behavior July 1st, 2022


New protocol for assessing the safety of nanomaterials July 1st, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *