Nanotechnology Now – Press Release: Atom by atom: building precise smaller nanoparticles with templates


Home > Press > Atom by atom: building precise smaller nanoparticles with templates

This scientific illustration of the study, created by Dr Takamasa Tsukamoto of Tokyo Tech, was selected as an Inside Cover Picture in Angewandte Chemie International Edition. Image source: Dr. Tsukamoto, Tokyo Tech

CREDIT
Dr Takamasa Tsukamoto of Tokyo Tech
This scientific illustration of the study, created by Dr Takamasa Tsukamoto of Tokyo Tech, was selected as an Inside Cover Picture in Angewandte Chemie International Edition. Image source: Dr. Tsukamoto, Tokyo Tech

CREDIT
Dr Takamasa Tsukamoto of Tokyo Tech

Abstract:
Nanoparticles (which have sizes ranging between 3–500 nm), and sub-nanoclusters (which are around 1 nm in diameter) are utilized in many fields, including medicine, robotics, materials science, and engineering. Their small size and large surface-area-to-volume ratios give them unique properties, rendering them valuable in a variety of applications, ranging from pollution control to chemical synthesis.

Atom by atom: building precise smaller nanoparticles with templates


Tokyo, Japan | Posted on March 4th, 2022

Recently, quasi-sub-nanomaterials, which are about 1-3 nm in scale have attracted attention because they have a dual nature–they can be regarded as nanoparticles, as well as inorganic molecules. Understandably, controlling the number of atoms in a quasi-sub-nanomaterial could be of much value. However, synthesizing such precise molecular structures is technically challenging–but scientists at Tokyo Tech were certainly up for this challenge!

Dendrons – highly branched molecular structures consisting of basic imines – have been suggested as precursors for the precise synthesis of quasi-sub-nanomaterials with the desired number of atoms. The imines in the dendrons function as a scaffold that can form complexes with certain acidic metallic salts, accumulating metals on the dendron structure. These, in turn, can be reduced to metal sub-nanoclusters with the desired number of atoms. However, synthesizing dendrons with a high proportion of imines is an expensive process with low yield.

Now, in a study published in Angewandte Chemie, the researchers explain how they have combined multiple dendrimer structures to form a supramolecular capsule composed of more than 60 imines. “The synthesis of dendron-assembled supramolecules was accomplished by connecting internal core units and external dendron units—which determine the central structure and terminal branches, respectively,” explains Assistant Professor Takamasa Tsukamoto, who was involved in the study. The internal structure of this supramolecule contained a six-pronged core with acidic tritylium, while each outer unit contained dendrons with imines. The interaction between the acidic core and the basic outer structure resulted in a self-assembling organo-complex.

Moreover, the imines were found to co-accumulate with rhodium salts such that the innermost imines formed a complex with tritylium units while the outermost ones were populated with the rhodium salts. The resulting supramolecule, which had an internal core unit surrounded by six external dendron units (each containing 14 rhodium salts at the outer imines), was successfully condensed to clusters containing 84 rhodium atoms having a size of 1.5 nm.

By attaching imine containing dendrons to an acidic core, the researchers constructed a supramolecular template for the synthesis of quasi-sub-nanomaterials. Moreover, since the imines can form complexes with a wide range of cationic units, the method can be used to synthesize a variety of supramolecular structures. Due to its versatility, simplicity and cost-effectiveness, the method can be a cornerstone for the development of new nanomaterials. “This novel approach for obtaining atomicity-defined quasi-sub-nanomaterials without the limitations of conventional methods has the potential to play an important role in exploring the last frontiers of nanomaterials,” says Prof. Tsukamoto. Indeed, this may be a “small” step for Tokyo Tech, but a “giant” step for nanoscience!

####

For more information, please click here

Contacts:
Kazuhide Hsegawa
Tokyo Institute of Technology

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information


The future of data storage is double-helical, research indicates: The Information Age needs a new data storage powerhouse. With an expanded molecular alphabet and a 21st century twist, DNA may just fit the bill. March 4th, 2022


Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022


CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022


OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Nanofabrication


Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021


Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021


New tech builds ultralow-loss integrated photonic circuits April 16th, 2021


Kirigami-style fabrication may enable new 3D nanostructures April 2nd, 2021

Possible Futures


Controlling how fast graphene cools down An international study, published in ACS Nano, has demonstrated an unprecedented level of control of the optical properties of graphene. The work has promising applications in different technological fields ranging from photonics to teleco March 4th, 2022


Superb switching uniformity of RRAM with localized nanofilaments of wafer-scale Si subulate array March 4th, 2022


Development of semiconductor microchip that can detect prostate cancer markers with ultra-high sensitivity: Working toward the realization of IoT biosensors March 4th, 2022


CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Self Assembly


Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022


A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021


3D design leads to first stable and strong self-assembling 1D nanographene wires April 6th, 2021


DNA–Metal double helix: Single-stranded DNA as supramolecular template for highly organized palladium nanowires March 26th, 2021

Discoveries


Development of semiconductor microchip that can detect prostate cancer markers with ultra-high sensitivity: Working toward the realization of IoT biosensors March 4th, 2022


Measuring pulse waves with a hair-thin patch March 4th, 2022


The future of data storage is double-helical, research indicates: The Information Age needs a new data storage powerhouse. With an expanded molecular alphabet and a 21st century twist, DNA may just fit the bill. March 4th, 2022


Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Announcements


The future of data storage is double-helical, research indicates: The Information Age needs a new data storage powerhouse. With an expanded molecular alphabet and a 21st century twist, DNA may just fit the bill. March 4th, 2022


Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022


CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022


OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Controlling how fast graphene cools down An international study, published in ACS Nano, has demonstrated an unprecedented level of control of the optical properties of graphene. The work has promising applications in different technological fields ranging from photonics to teleco March 4th, 2022


Superb switching uniformity of RRAM with localized nanofilaments of wafer-scale Si subulate array March 4th, 2022


Development of semiconductor microchip that can detect prostate cancer markers with ultra-high sensitivity: Working toward the realization of IoT biosensors March 4th, 2022


Measuring pulse waves with a hair-thin patch March 4th, 2022

Nanobiotechnology


Development of semiconductor microchip that can detect prostate cancer markers with ultra-high sensitivity: Working toward the realization of IoT biosensors March 4th, 2022


Measuring pulse waves with a hair-thin patch March 4th, 2022


The future of data storage is double-helical, research indicates: The Information Age needs a new data storage powerhouse. With an expanded molecular alphabet and a 21st century twist, DNA may just fit the bill. March 4th, 2022


Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *