Nanotechnology Now – Press Release: Best of both worlds—Combining classical and quantum systems to meet supercomputing demands: Scientists detect strongly entangled pair of protons on a nanocrystalline silicon surface, potentially enabling new levels of high-speed computing


Home > Press > Best of both worlds—Combining classical and quantum systems to meet supercomputing demands: Scientists detect strongly entangled pair of protons on a nanocrystalline silicon surface, potentially enabling new levels of high-speed computing

This study shows how quantum entanglement displays a huge energy difference between its states unlike those of molecular hydrogen, promising ultra-fast processing in the order of 106 qubits and atom teleportation (H1H4)

CREDIT
Takahiro Matsumoto from NCU, Japan
This study shows how quantum entanglement displays a huge energy difference between its states unlike those of molecular hydrogen, promising ultra-fast processing in the order of 106 qubits and atom teleportation (H1H4)

CREDIT
Takahiro Matsumoto from NCU, Japan

Abstract:
One of the most interesting phenomena in quantum mechanics is “quantum entanglement.” This phenomenon describes how certain particles are inextricably linked, such that their states can only be described with reference to each other. This particle interaction also forms the basis of quantum computing. And this is why, in recent years, physicists have looked for techniques to generate entanglement. However, these techniques confront a number of engineering hurdles, including limitations in creating large number of “qubits” (quantum bits, the basic unit of quantum information), the need to maintain extremely low temperatures (

Best of both worlds—Combining classical and quantum systems to meet supercomputing demands: Scientists detect strongly entangled pair of protons on a nanocrystalline silicon surface, potentially enabling new levels of high-speed computing


Nagoya City, Japan | Posted on August 13th, 2021

Recently, a team of scientists in Japan, including Prof. Takahiro Matsumoto from Nagoya City University, Prof. Hidehiko Sugimoto from Chuo University, Dr. Takashi Ohhara from the Japan Atomic Energy Agency, and Dr. Susumu Ikeda from High Energy Accelerator Research Organization, recognized the need for stable qubits. By looking at the surface spin states, the scientists discovered an entangled pair of protons on the surface of a silicon nanocrystal.

Prof. Matsumoto, the lead scientist, outlines the significance of their study, “Proton entanglement has been previously observed in molecular hydrogen and plays an important role in a variety of scientific disciplines. However, the entangled state was found in gas or liquid phases only. Now, we have detected quantum entanglement on a solid surface, which can lay the groundwork for future quantum technologies.” Their pioneering study was published in a recent issue of Physical Review B.

The scientists studied the spin states using a technique known as “inelastic neutron scattering spectroscopy” to determine the nature of surface vibrations. By modeling these surface atoms as “harmonic oscillators,” they showed anti-symmetry of protons. Since the protons were identical (or indistinguishable), the oscillator model restricted their possible spin states, resulting in strong entanglement. Compared to the proton entanglement in molecular hydrogen, the entanglement harbored a massive energy difference between its states, ensuring its longevity and stability. Additionally, the scientists theoretically demonstrated a cascade transition of terahertz entangled photon pairs using the proton entanglement.

The confluence of proton qubits with contemporary silicon technology could result in an organic union of classical and quantum computing platforms, enabling a much larger number of qubits (106) than currently available (102), and ultra-fast processing for new supercomputing applications. “Quantum computers can handle intricate problems, such as integer factorization and the ‘traveling salesman problem,’ which are virtually impossible to solve with traditional supercomputers. This could be a game-changer in quantum computing with regard to storing, processing, and transferring data, potentially even leading to a paradigm shift in pharmaceuticals, data security, and many other areas,” concludes an optimistic Prof. Matsumoto.

We could be on the verge of witnessing a technological revolution in quantum computing!

####

About Nagoya City University
Nagoya City University (NCU), a public university established in 1950, began with the Medical School and the Faculty of Pharmaceutical Sciences. Its origins, however, stretch back to the Nagoya School of Pharmacy, founded in 1884, and the Nagoya Municipal Women’s Higher Medical School, founded in 1943. NCU has grown into an urban-style public university in the center of Nagoya, Japan, with around 4,000 students and 1,600 faculty members. In the last 60 years, NCU has graduated over 26,000 students. NCU continues to expand as an advanced education and research center to assist in the improvement of local health and welfare, as well as the development of the local economy and culture.

Website: https://www.nagoya-cu.ac.jp/english/

About Professor Takahiro Matsumoto from Nagoya City University, Japan

Dr. Takahiro Matsumoto has been a Professor at the Graduate School of Design and Architecture at Nagoya City University (NCU) since 2015. He received his PhD from the Tokyo University of Agriculture and Technology and worked as a researcher for nearly 12 years at Nippon Steel Corporation and the Japan Science and Technology Agency. Prior to joining NCU, he also worked as a Chief Engineer at Stanley Electric Co., Ltd. for over 4 years. His research interests include optical physics, quantum electronics, and nanomaterials. He has co-authored 4 books and over 100 papers. Prof. Matsumoto has acquired over 200 industrial patents for his outstanding research work.

Funding information

This study was financially supported by JSPS KAKENHI grant no. 20H04455.

For more information, please click here

Contacts:
Sone Yasunobu

Office: 81-528-538-329
Expert Contact

Takahiro Matsumoto

Copyright © Nagoya City University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Reference

News and information

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

A holistic approach to materials for the next generation of electrical insulation August 13th, 2021

DTU researchers tighten grip on quantum computer: In a new groundbreaking work, researchers from DTU have now realized the complete platform for an optical quantum computer August 13th, 2021

Silica nanostructure with chemo-enzymatic compartmentalization August 13th, 2021

Physics

DTU researchers tighten grip on quantum computer: In a new groundbreaking work, researchers from DTU have now realized the complete platform for an optical quantum computer August 13th, 2021

One-dimensional red phosphorous glows in unexpected ways: New study published in Nature Communications is the first to show strong optical properties in a 1D van der Waal material August 13th, 2021

NIST’s quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

Quantum Physics

NIST’s quantum crystal could be a new dark matter sensor Peer-Reviewed Publication August 6th, 2021

Superconductivity in high-Tc cuprates: ‘from maximal to minimal dissipation’ – a new paradigm? July 30th, 2021

Researchers find ‘layer Hall effect’ in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

Superconductivity

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Remote control for quantum emitters:Novel approach could become a asset in quantum computers and quantum simulation March 12th, 2021

Possible Futures

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

Novel nanotechnology found to enhance fight against colorectal cancer and melanoma: A first-of-its-kind nanotherapeutic delivery system demonstrated remarkable efficacy against both early-stage and difficult-to-treat late-stage metastatic tumors August 13th, 2021

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

One-dimensional red phosphorous glows in unexpected ways: New study published in Nature Communications is the first to show strong optical properties in a 1D van der Waal material August 13th, 2021

Quantum Computing

DTU researchers tighten grip on quantum computer: In a new groundbreaking work, researchers from DTU have now realized the complete platform for an optical quantum computer August 13th, 2021

Quantum computing enables unprecedented materials science simulations: Multi-institutional team provides a foundation for unraveling the mysteries of magnetic materials August 6th, 2021

Non-linear effects in coupled optical microcavities July 30th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Discoveries

DTU researchers tighten grip on quantum computer: In a new groundbreaking work, researchers from DTU have now realized the complete platform for an optical quantum computer August 13th, 2021

Harnessing sunlight to fuel the future through covalent organic frameworks: Scientists underscore the potential of a new class of materials to convert sunlight to fuel August 13th, 2021

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

Novel nanotechnology found to enhance fight against colorectal cancer and melanoma: A first-of-its-kind nanotherapeutic delivery system demonstrated remarkable efficacy against both early-stage and difficult-to-treat late-stage metastatic tumors August 13th, 2021

Announcements

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

Novel nanotechnology found to enhance fight against colorectal cancer and melanoma: A first-of-its-kind nanotherapeutic delivery system demonstrated remarkable efficacy against both early-stage and difficult-to-treat late-stage metastatic tumors August 13th, 2021

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

One-dimensional red phosphorous glows in unexpected ways: New study published in Nature Communications is the first to show strong optical properties in a 1D van der Waal material August 13th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

DTU researchers tighten grip on quantum computer: In a new groundbreaking work, researchers from DTU have now realized the complete platform for an optical quantum computer August 13th, 2021

Harnessing sunlight to fuel the future through covalent organic frameworks: Scientists underscore the potential of a new class of materials to convert sunlight to fuel August 13th, 2021

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

Novel nanotechnology found to enhance fight against colorectal cancer and melanoma: A first-of-its-kind nanotherapeutic delivery system demonstrated remarkable efficacy against both early-stage and difficult-to-treat late-stage metastatic tumors August 13th, 2021

Quantum nanoscience

Researchers find ‘layer Hall effect’ in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect July 30th, 2021

Chaotic electrons heed ‘limit’ in strange metals July 30th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

Leave a Reply

Your email address will not be published. Required fields are marked *