Nanotechnology Now – Press Release: Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies


Home > Press > Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies

Numerous pores were observed in GO (indicated by white arrows). In contrast, no pores were visible in Pf-GO, even under high magnification.

Credit
Kazuto Hatakeyama and Shintaro Ida from Kumamoto University
Numerous pores were observed in GO (indicated by white arrows). In contrast, no pores were visible in Pf-GO, even under high magnification.

Credit
Kazuto Hatakeyama and Shintaro Ida from Kumamoto University

Abstract:
Kumamoto University’s research team, led by Assistant Professor Kazuto Hatakeyama and Professor Shintaro Ida of Institute of Industrial Nanomaterials, has announced a groundbreaking development in hydrogen ion barrier films using graphene oxide (GO) that lacks internal pores. This innovative approach promises significant advancements in protective coatings for various applications.

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies


Kumamoto, Japan | Posted on September 13th, 2024

In their study, the research team successfully synthesized and developed a thin film from a new form of graphene oxide that does not contain pores. Traditionally, GO has been known for its high ionic conductivity, which made it challenging to use as an ion barrier. However, by eliminating the internal pores, the team created a material with dramatically improved hydrogen ion barrier properties.

The new graphene oxide film exhibits up to 100,000 times better hydrogen ion barrier performance compared to conventional GO films, based on the AC impedance spectroscopy ‘s out-of-plane proton conductivity result. This breakthrough has also been demonstrated through experiments where the non-porous graphene oxide coating effectively protected lithium foil from water droplets, preventing any reaction between the lithium and the water.

The study also confirmed that hydrogen ions move through the pores in conventional GO, highlighting the significance of eliminating these pores to enhance barrier capabilities. This advancement opens doors to new applications in protective coatings, rust prevention, and hydrogen infrastructure.

This research marks a significant advance in materials science and could pave the way for next-generation coatings with enhanced protective properties. “Moving forward, we plan to harness the hydrogen ion barrier performance for practical applications, while also addressing the challenges posed by the ‘pores’ in the GO structure to unlock additional functionalities,” explained Assistant Professor Hatakeyama as he outlined the next steps in his research.

####

For more information, please click here

Contacts:
Kumamoto University

Office: 96-342-3307

Copyright © Kumamoto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Article Title

News and information


New method in the fight against forever chemicals September 13th, 2024


Energy transmission in quantum field theory requires information September 13th, 2024


Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024


New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024

Graphene/ Graphite


A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024


First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024


NRL discovers two-dimensional waveguides February 16th, 2024


First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Coatings


Graphene nanotubes offer an efficient replacement for carbon additives in conductive electrical heating paints November 3rd, 2021


Graphene nanotubes provide a shortcut to add conductivity to powder coatings October 1st, 2021


Primers with graphene nanotubes offer a new solution for electrostatic painting of automotive parts July 16th, 2021


Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

Possible Futures


Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024


Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024


NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024


New discovery aims to improve the design of microelectronic devices September 13th, 2024

Discoveries


Energy transmission in quantum field theory requires information September 13th, 2024


Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024


New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024


Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Announcements


Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024


NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024


New discovery aims to improve the design of microelectronic devices September 13th, 2024


New method in the fight against forever chemicals September 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Rice research could make weird AI images a thing of the past: New diffusion model approach solves the aspect ratio problem September 13th, 2024


Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024


New nanomaterial could transform how we visualise fingerprints: Innovative nanomaterials have the potential to revolutionise forensic science, particularly in the detection of latent (non-visible) fingermarks September 13th, 2024


Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

Leave a Reply

Your email address will not be published. Required fields are marked *