Nanotechnology Now – Press Release: CEA-Leti and Partners Demo Potentially Scalable Readout System for Large Arrays of Quantum Dots: Results Hold promise for Fast, Accurate Single-Shot Readout ‘Of Foundry-Compatible Si MOS Spin Qubits’


Home > Press > CEA-Leti and Partners Demo Potentially Scalable Readout System for Large Arrays of Quantum Dots: Results Hold promise for Fast, Accurate Single-Shot Readout ‘Of Foundry-Compatible Si MOS Spin Qubits’

Abstract:
Leti, a technology research institute of CEA Tech, and its research partners have demonstrated a potentially scalable readout technique that could be fast enough for high-fidelity measurements in large arrays of quantum dots.

CEA-Leti and Partners Demo Potentially Scalable Readout System for Large Arrays of Quantum Dots: Results Hold promise for Fast, Accurate Single-Shot Readout ‘Of Foundry-Compatible Si MOS Spin Qubits’


San Francisco, CA | Posted on December 12th, 2019

In a paper presented at IEDM 2019, the international research team reported its work on developing a toolkit on a SOI MOSFET-based prototyping platform that enables fast reading of the states of charge and spin. The study explored two gate-based reflectometry readout systems for probing charge and spin states in linear arrangements of MOS split-gate-defined arrays of quantum dots. The first system gives the exact number of charges entering the array and can help to initialize it. It can also read spin states, albeit in relatively small arrays. The second one gives the spin state in any quantum dot regardless of the array length, but is not useful for tracking charge number. Both readout schemes can be used complementarily in large arrays.

The study’s findings “bear significance for fast, high-fidelity, single-shot readout of large arrays of foundry-compatible Si MOS spin qubits,” the paper notes.

“The short-term efforts for our team going forward will be a joint optimization to increase speed and reliability of the readouts,” said CEA-Leti’s Louis Hutin, lead author on the paper. “The longer-term goal is to transfer this know-how on a larger scale and to less conventional architectures, featuring an optimized topology for error correction.”

Reflectometry is a technique that leverages signal reflections along a conducting line when an incident RF wave meets an impedance discontinuity. In CEA-Leti’s study, the probing line was connected to the MOS gate of a Si quantum dot. The system was prepared so that the load impedance depends on the spin state of the qubit, which enabled the team to monitor single spin events non-destructively and almost as they occurred.

In addition to CEA-Leti, the research team includes CNRS Institut Néel and CEA-IRIG, Grenoble, France; the Niels Bohr Institute, University of Copenhagen, Denmark; and Hitachi Cambridge Laboratory and Cavendish Laboratory, University of Cambridge, UK. Their paper is titled “Gate Reflectometry for Probing Charge and Spin States in Linear Si MOS Split-Gate Arrays”.

####

About CEA-Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.
Follow us on www.leti.fr/en and @CEA_Leti.

CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

For more information, please click here

Contacts:
Press Contact
Agency
+33 6 74 93 23 47

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

News and information

Growing carbon nanotubes with the right twist: Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth December 13th, 2019

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods December 13th, 2019

Tiny magnetic particles enable new material to bend, twist, and grab December 13th, 2019

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

Discoveries

Growing carbon nanotubes with the right twist: Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth December 13th, 2019

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods December 13th, 2019

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

Silver improves the efficiency of monograin layer solar cells December 12th, 2019

Announcements

Growing carbon nanotubes with the right twist: Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth December 13th, 2019

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods December 13th, 2019

Tiny magnetic particles enable new material to bend, twist, and grab December 13th, 2019

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

Tools

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

ACM Research Announces Global Commercial Availability of Environmentally Friendly, Cost-Effective Advanced Wafer Cleaning System: Ultra C Tahoe delivers single wafer cleaning performance with one-tenth of the sulfuric acid consumption December 3rd, 2019

Mirrorcle Technologies Unveils a 3D LiDAR System – “SyMPL” November 26th, 2019

SET, Smart Equipment Technology, Introduces New Automatic Flip-Chip Bonder Dedicated to Device Production: Developed with CEA-Leti in IRT Nanoelec’s 3D Program, NEO HB Combines High Precision, Flexibility, and Short Cycle Time for Direct Hybrid Bonding November 21st, 2019

Quantum Dots/Rods

Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019

Machine learning at the quantum lab September 27th, 2019

Trapping and moving tiny particles using light September 24th, 2019

Engineers revolutionize molecular microscopy: Single molecules measure electrical potentials July 12th, 2019

Alliances/Trade associations/Partnerships/Distributorships

SET, Smart Equipment Technology, Introduces New Automatic Flip-Chip Bonder Dedicated to Device Production: Developed with CEA-Leti in IRT Nanoelec’s 3D Program, NEO HB Combines High Precision, Flexibility, and Short Cycle Time for Direct Hybrid Bonding November 21st, 2019

PROPHESEE Joins IRT Nanoelec 3D Integration Program Will Work with CEA-Leti, STMicroelectronics, Mentor, EVG, and SET to Develop New 3D Event-Based Vision System October 14th, 2019

Toppan Photomasks and GLOBALFOUNDRIES Enter into Multi-Year Supply Agreement August 15th, 2019

Nanoscribe expands its worldwide presence: Specialist for 3D nano and micro fabrication opens US subsidiary for service and sales July 31st, 2019

Research partnerships

Tiny magnetic particles enable new material to bend, twist, and grab December 13th, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies November 27th, 2019

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Leave a Reply

Your email address will not be published. Required fields are marked *