Nanotechnology Now – Press Release: CEA-Leti Clears a Path to Developing Ultralow Loss, High-Power Photonics in UV through Mid-Infrared Wavelengths ‘Breakthrough Will Lead to Quantum Computing, Imaging, Sensing, Communication, and Clocks’


Home > Press > CEA-Leti Clears a Path to Developing Ultralow Loss, High-Power Photonics in UV through Mid-Infrared Wavelengths ‘Breakthrough Will Lead to Quantum Computing, Imaging, Sensing, Communication, and Clocks’

Abstract:
Leti, an institute of CEA-Tech, has developed a silicon nitride (Si3N4) 200mm platform for developing ultralow loss, high-power photonics in UV through mid-infrared wavelengths. Available in CEA-Leti’s SiN platform in a multi-project-wafer program, the breakthrough targets designers in integrated quantum optics, LiDAR, biosensing, and imaging whose projects require ultralow propagation losses and high-power handling capability.

CEA-Leti Clears a Path to Developing Ultralow Loss, High-Power Photonics in UV through Mid-Infrared Wavelengths ‘Breakthrough Will Lead to Quantum Computing, Imaging, Sensing, Communication, and Clocks’


San Francisco, CA | Posted on February 3rd, 2020

Announced at Photonics West 2020, this ultralow-loss SiN layer is available for multi-level photonic circuits. It can be combined with a heater layer and a silicon layer in a unique platform to integrate passive and active components, such as Mach-zehnder interferometers (MZI), multi-mode interferometers (MMI), ring resonators, filters, arbitrary waveform generators (AWG), modulators and photodiodes. This ultralow-loss layer can also present a local opening for biosensing applications.

“Companies requiring III-V/SiN laser cointegration or working on integrated quantum photonics for communication and computing applications can use this unique capability to combine those ultralow-loss properties with high thickness SiN in a CMOS-compatible photonics platform,” said Eléonore Hardy, business developer at CEA-Leti. “This breakthrough process will contribute to the Quantum 2.0 revolution and will lead to photonic devices that actively create, manipulate, and read out quantum states for the emergence of quantum computing, imaging, sensing, communication, and clocks.”

The best-in-class performance obtained with an 800-nm thick SiN layer includes a two-x reduction in propagation loss with three decibels per meter (3 dB/m) for high-confinement 1.6µm-wide strip waveguides across the S, C, and L optical-wavelength bands. CEA-Leti researchers also improved aging in the photonics devices and produced high-Q photonic microresonators with quality factors approaching 107 across the C band and reduced feature size.

Deposition of SiN uses CEA-Leti’s high-quality twist-and-grow, low-pressure chemical vapor deposition (LPCVD) technique that deposits relatively thick, pure, and stoichiometric SiN with good thickness uniformity, unlike standard chemical vapor deposition techniques. Furthermore, a multistep chemical-physical annealing smoothed the sidewall roughness of SiN waveguides, which further decreased propagation losses.

####

About Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti has pioneered micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. The institute tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, its multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, CEA-Leti is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.

CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

See paper, “Ultralow-loss tightly confining Si3N4 waveguides and high-Q microresonators”:

News and information

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

Arrowhead Reports Interim Clinical Data on Cardiometabolic Candidates ARO-APOC3 and ARO-ANG3 February 5th, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

How supercomputers are helping us link quantum entanglement to cold coffee February 1st, 2020

Quantum Physics

A quantum of solid February 1st, 2020

How supercomputers are helping us link quantum entanglement to cold coffee February 1st, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Possible Futures

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

A quantum of solid February 1st, 2020

How supercomputers are helping us link quantum entanglement to cold coffee February 1st, 2020

Discoveries

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

A quantum of solid February 1st, 2020

How supercomputers are helping us link quantum entanglement to cold coffee February 1st, 2020

Announcements

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

Arrowhead Reports Interim Clinical Data on Cardiometabolic Candidates ARO-APOC3 and ARO-ANG3 February 5th, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

How supercomputers are helping us link quantum entanglement to cold coffee February 1st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

A consensus statement establishes the protocols to assess and report stability of perovskite photovoltaic devices February 1st, 2020

A quantum of solid February 1st, 2020

How supercomputers are helping us link quantum entanglement to cold coffee February 1st, 2020

Events/Classes

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Arrowhead Pharmaceuticals to Webcast Fiscal 2020 First Quarter Results January 24th, 2020

International Summit on Nanomedicine & Nanotechnology January 24th, 2020

CEA-Leti Will Present 21 Papers (Five Invited) at Photonics West 2020 & Host a Workshop January 9th, 2020

Photonics/Optics/Lasers

A quantum of solid February 1st, 2020

A megalibrary of nanoparticles: Researchers at Penn State have developed a simple approach that could produce over 65,000 different types of complex nanoparticles January 30th, 2020

Let the europium shine brighter January 21st, 2020

Nanotubes may give the world better batteries: Rice U. scientists’ method quenches lithium metal dendrites in batteries that charge faster, last longer January 16th, 2020

Quantum nanoscience

A quantum of solid February 1st, 2020

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Quantum engine operating at maximum power: A new experimental proof-of-concept quantum Otto cycle, using nuclear spins, has reached an efficiency close to its thermodynamic limit at maximum power December 20th, 2019

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

Leave a Reply

Your email address will not be published. Required fields are marked *