Home > Press > DeepMind simulates matter on the nanoscale with AI
Abstract:
In a paper published by Science, DeepMind demonstrates how neural networks can improve approximation of the Density Functional (a method used to describe electron interactions in chemical systems).
This illustrates deep learnings promise in accurately simulating matter at the quantum mechanical level.
Alongside the paper, DeepMind will open-source the code to provide a research foundation for others to build on.
DeepMind simulates matter on the nanoscale with AI
London, UK | Posted on December 10th, 2021
In a paper published today in the scientific journal Science, DeepMind demonstrates how neural networks can be used to describe electron interactions in chemical systems more accurately than existing methods.
Density Functional Theory, established in the 1960s, describes the mapping between electron density and interaction energy. For more than 50 years, the exact nature of mapping between electron density and interaction energy the so-called density functional has remained unknown. In a significant advancement for the field, DeepMind has shown that neural networks can be used to build a more accurate map of the density and interaction between electrons than was previously attainable.
By expressing the functional as a neural network and incorporating exact properties into the training data, DeepMind was able to train the model to learn functionals free from two important systematic errors the delocalisation error and spin symmetry breaking resulting in a better description of a broad class of chemical reactions.
In the short term, this will empower researchers with an improved approximation of the exact Density Functional for immediate use through the availability of our code. In the long term, it is another step showing deep learnings promise in accurately simulating matter at the quantum mechanical level which may enable material design in a computer by allowing researchers to explore questions about materials, medicines, and catalysts at the nanoscale level.
Understanding technology at the nanoscale is becoming increasingly crucial in helping us tackle some of the major challenges of the 21st century, from clean electricity to plastic pollution, says James Kirkpatrick, Research Scientist at DeepMind. This research is a step in the right direction towards enabling us to better understand the interactions between electrons, the glue that holds molecules together.
With the aim of accelerating progress in the field, DeepMind has made the paper, and open-sourced code freely available.
####
About DeepMind
DeepMind is a scientific discovery company committed to solving intelligence to advance science and humanity. Solving intelligence requires a diverse and interdisciplinary team working closely together from scientists and designers, to engineers and ethicists to pioneer the development of advanced artificial intelligence.
The companys breakthroughs include AlphaGo, AlphaFold, over one thousand published research papers (including more than a dozen in Nature or Science), partnerships with scientific organisations, and hundreds of contributions to Googles products (in everything from Android battery efficiency to Assistant text-to-speech).
For more information, please click here
Contacts:
Danielle Breen
DeepMind
Office: 0044-771-724-8055
Copyright © DeepMind
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
Resolving the puzzles of graphene superconductivity: Physicists publish a theoretical framework to explain the recent discovery of superconductivity in trilayer graphene December 10th, 2021
Development of a high-energy-resolution, LaB6 nanowire-based field emission gun: Electron source enables atomic resolution TEM observation December 10th, 2021
Possible Futures
Resolving the puzzles of graphene superconductivity: Physicists publish a theoretical framework to explain the recent discovery of superconductivity in trilayer graphene December 10th, 2021
Development of a high-energy-resolution, LaB6 nanowire-based field emission gun: Electron source enables atomic resolution TEM observation December 10th, 2021
PASQAL announces quantum computing collaboration with NVIDIA December 10th, 2021
Discoveries
Resolving the puzzles of graphene superconductivity: Physicists publish a theoretical framework to explain the recent discovery of superconductivity in trilayer graphene December 10th, 2021
Development of a high-energy-resolution, LaB6 nanowire-based field emission gun: Electron source enables atomic resolution TEM observation December 10th, 2021
PASQAL announces quantum computing collaboration with NVIDIA December 10th, 2021
Announcements
Development of a high-energy-resolution, LaB6 nanowire-based field emission gun: Electron source enables atomic resolution TEM observation December 10th, 2021
PASQAL announces quantum computing collaboration with NVIDIA December 10th, 2021
Innovative silicon nanochip can reprogram biological tissue in living body December 10th, 2021
A new mechanism for generation of vesicles that transport molecules and vaccine nanoparticles into living cells December 10th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Resolving the puzzles of graphene superconductivity: Physicists publish a theoretical framework to explain the recent discovery of superconductivity in trilayer graphene December 10th, 2021
Innovative silicon nanochip can reprogram biological tissue in living body December 10th, 2021
A new mechanism for generation of vesicles that transport molecules and vaccine nanoparticles into living cells December 10th, 2021
Artificial Intelligence
Quantum Physics in Proteins: Artificial intelligence affords unprecedented insights into how biomolecules work November 5th, 2021
Argonne researchers use AI to optimize a popular material coating technique in real time June 25th, 2021