Home > Press > Diamond glitter: A play of colors with artificial DNA crystals
Professor Tim Liedl with PhD Student Xin Yin (left) and Postdoc Gregor Posnjak (right) in the lab
CREDIT Stephan Hoeck / LMU |
Abstract:
Using DNA origami, LMU researchers have built a diamond lattice with a periodicity of hundreds of nanometers a new approach for manufacturing semiconductors for visible light.
Diamond glitter: A play of colors with artificial DNA crystals
München, Germany | Posted on May 17th, 2024
The shimmering of butterfly wings in bright colors does not emerge from pigments. Rather, it is photonic crystals that are responsible for the play of colors. Their periodic nanostructure allows light at certain wavelengths to pass through while reflecting other wavelengths. This causes the wing scales, which are in fact transparent, to appear so magnificently colored. For research teams, the manufacture of artificial photonic crystals for visible light wavelengths has been a major challenge and motivation ever since they were predicted by theorists more than 35 years ago. Photonic crystals have a versatile range of applications. They have been employed to develop more efficient solar cells, innovative optical waveguides, and materials for quantum communication. However, they have been very laborious to manufacture, explains Dr. Gregor Posnjak. The physicist is a postdoc in the research group of LMU Professor Tim Liedl, whose work is funded by the e-conversion Cluster of Excellence and the European Research Council. Using DNA nanotechnology, the team has developed a new approach for the manufacture of photonic crystals. Their results have now been published in the journal Science.
Diamond structure out of strands of DNA
In contrast to lithographic techniques, the LMU team uses a method called DNA origami to design and synthesize building blocks, which then self-assemble into a specific lattice structure. Its long been known that the diamond lattice theoretically has an optimal geometry for photonic crystals. In diamonds, each carbon atom is bonded to four other carbon atoms. Our challenge consisted in enlarging the structure of a diamond crystal by a factor of 500, so that the spaces between the building blocks correspond with the wavelength of light, explains Tim Liedl. We increased the periodicity of the lattice to 170 nanometers by replacing the individual atoms with larger building blocks in our case, through DNA origami, says Posnjak.
The perfect molecule folding technique
What sounds like magic is actually a specialty of the Liedl group, one of the worlds leading research teams in DNA origami and self-assembly. For this purpose, the scientists use a long, ring-shaped DNA strand (consisting of around 8,000 bases) and a set of 200 short DNA staples. The latter control the folding of the longer DNA strand into virtually any shape at all akin to origami masters, who fold pieces of paper into intricate objects. As such, the clamps are a means of determining how the DNA origami objects combine to form the desired diamond lattice, says the LMU postdoctoral researcher. The DNA origami building blocks form crystals of approximately ten micrometers in size, which are deposited on a substrate and then passed on to a cooperating research group from the Walter Schottky Institute at the Technical University of Munich (TUM): The team led by Professor Ian Sharp (also funded by the e-conversion Cluster of Excellence) is able to deposit individual atomic layers of titanium dioxide on all surfaces of the DNA origami crystals. The DNA origami diamond lattice serves as scaffolding for titanium dioxide, which, on account of its high index of refraction, determines the photonic properties of the lattice. After coating, our photonic crystal does not allow UV light with a wavelength of about 300 nanometers to pass through, but rather reflects it, explains Posnjak. The wavelength of the reflected light can be controlled via the thickness of the titanium dioxide layer.
DNA origami could boost photonics
For photonic crystals that work in the infrared range, classic lithographic techniques are suitable but laborious and expensive. In the wavelength range of visible and UV light, lithographic methods have not been successful to date. Consequently, the comparatively easy manufacturing process using the self-assembly of DNA origami in an aqueous solution offers a powerful alternative for producing structures in the desired size cost-effectively and in larger quantities, says Prof. Tim Liedl. He is convinced that the unique structure with its large pores, which are chemically addressable, will stimulate further research for example, in the domain of energy harvesting and storage. In the same issue of Science, a collaboration led by prof. Petr ulc of Arizona State University and TUM presents a theoretical framework for designing diverse crystalline lattices from patchy colloids, and experimentally demonstrates the method by utilizing DNA origami building blocks to form a pyrochlore lattice, which potentially also could be used for photonic applications.
####
For more information, please click here
Contacts:
Media Contact
Constanze Drewlo
Ludwig-Maximilians-Universität München
Office: 089-218-06529
Expert Contacts
Dr. Gregor Posnjak
Research Group on Molecular Self-Assembly and Nanoengineering, Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München
Prof. Tim Liedl
Research Group on Molecular Self-Assembly and Nanoengineering, Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München
Copyright © Ludwig-Maximilians-Universität München
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
Possible Futures
Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Chip Technology
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Self Assembly
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022
Nanomedicine
Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Good as gold – improving infectious disease testing with gold nanoparticles April 5th, 2024
Discoveries
Finding quantum order in chaos May 17th, 2024
Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024
What is “time” for quantum particles? Publication by TU Darmstadt researchers in renowned journal “Science Advances” May 17th, 2024
Announcements
Finding quantum order in chaos May 17th, 2024
Oscillating paramagnetic Meissner effect and Berezinskii-Kosterlitz-Thouless transition in cuprate superconductor May 17th, 2024
What is “time” for quantum particles? Publication by TU Darmstadt researchers in renowned journal “Science Advances” May 17th, 2024
Nanobiotechnology
Advances in priming B cell immunity against HIV pave the way to future HIV vaccines, shows quartet of new studies May 17th, 2024
New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024
Good as gold – improving infectious disease testing with gold nanoparticles April 5th, 2024