Home > Press > Exquisitely thin membranes can slash energy spent refining crude oil into fuel and plastic: Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil
Abstract:
Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil.
Exquisitely thin membranes can slash energy spent refining crude oil into fuel and plastic: Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil
London, UK | Posted on September 30th, 2022
The global production of crude oil is currently around 80 million barrels per day. Hydrocarbons extracted from crude oil are the main ingredients for manufacturing fossil fuels, plastics, and polymers. The process by which they are extracted is extremely energy intensive.
Most refineries process crude oil using atmospheric and vacuum distillation, in which crude oil is heated to separate compounds according to their boiling points. Typical refineries process 100,000-250,000 barrels/day there are some processing over 1 million. The maximum temperature for the distillation varies based on the quality of the crude, but the distillation temperatures can exceed 500 °C. This process consumes 1100 terawatt-hours per year nearly 1% of global energy use.1
Membrane technology that can separate the molecules in crude oil by their different sizes and classes could be a far more energy efficient process, consuming 90% less energy than distillation columns. Exceptionally thin nanomembranes have proved successful for extracting fresh water from sea water by rejecting the salt while allowing the water to permeate through reverse osmosis (RO) process. The researchers sought to separate hydrocarbons from crude oil by a parallel method.
This requires nanomembranes to be hydrophobic, which can provide high affinity and rapid pathways for processing hydrocarbons. However, conventional nanomembranes used for RO are hydrophilic in nature and exhibit limited permeance of hydrocarbon liquids, remaining too low for industrial crude separation.
A team led by Professor Andrew Livingston at Queen Mary University of London used multiblock oligomer amines to create hydrophobic polyamide nanofilms that provide100 times faster permeance than that of hydrophilic nanofilms. By reducing the membrane thickness to approximately 10 nanometers, they achieved permeance one order of magnitude higher than the current state-of-the-art hydrophobic membranes, with a comparable selectivity in fractionation of real crude oil. As a result, the membranes developed by the team could markedly reduce the energy consumption of processing crude oil. The analysis of the fractionation was performed by ExxonMobil in a laboratory in the United States.
Andrew Livingston, Professor of Chemical Engineering at Queen Mary University of London said: ‘A vast amount of energy is consumed in industry separating molecules. The aim of our research is to provide low energy alternatives to these processes. Due to the innovations in the chemistry we used to make these membranes, we can achieve molecular architectures that achieve exquisite separations, and provide less resource intensive techniques for the separation of molecules.’
Study co-corresponding author Dr Zhiwei Jiang, Research Associate at Queen Mary University of London, said: ‘Thinner is better – the liquid passes through the membranes much more quickly, rapidly speeding up the process, and therefore reducing the plant footprint while processing same quantity of liquids.
This work was funded by ExxonMobil; the European Research Council; King Abdullah University of Science and Technology; and the Engineering and Physical Sciences Research Council.
####
For more information, please click here
Contacts:
Melissa Bradshaw
Queen Mary University of London
Copyright © Queen Mary University of London
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
Drawing data in nanometer scale September 30th, 2022
Researchers unveil mystery inside Li- o2 batteries September 30th, 2022
Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022
Possible Futures
Researchers unveil mystery inside Li- o2 batteries September 30th, 2022
Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022
Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022
Discoveries
Surface microstructures of lunar soil returned by Change-5 mission reveal an intermediate stage in space weathering process September 30th, 2022
Researchers unveil mystery inside Li- o2 batteries September 30th, 2022
Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022
Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022
Announcements
Researchers unveil mystery inside Li- o2 batteries September 30th, 2022
Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022
Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Conformal optical black hole for cavity September 30th, 2022
Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022
Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022
Energy
Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022
Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals September 23rd, 2022
Research partnerships
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
New catalyst offers a more affordable way to produce hydrogen from seawater September 9th, 2022
Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022