Nanotechnology Now – Press Release: Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers


Home > Press > Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers

A close-up of the magnetic encoding device before it was attached. The atomic beam enters the device through the hollow white ceramic tube shown.

Credit
Morgan Lowe, a PhD student in the Swansea team.
A close-up of the magnetic encoding device before it was attached. The atomic beam enters the device through the hollow white ceramic tube shown.

Credit
Morgan Lowe, a PhD student in the Swansea team.

Abstract:
Microscope images could be obtained much more quickly – rather than one pixel at a time – thanks to a new imaging method for neutral atomic beam microscopes developed by Swansea University researchers. It could ultimately lead to engineers and scientists getting faster results when they are scanning samples.

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers


Swansea, UK | Posted on August 16th, 2024

Neutral atomic beam microscopes are a major focus of research interest at present. They are capable of imaging various surfaces which cannot be studied using commercially available microscopes. These could include delicate samples – such as bacterial biofilms, ice films or organic photovoltaic devices – which are difficult to image or which are damaged and altered by electrons, ions and photons.

They work by scattering a beam of low energy neutral particles, usually helium atoms, from a surface to image its structure and composition.

Existing neutral atomic beam microscopes obtain the image by illuminating the sample through a microscopic pinhole. They then scan the position of the sample while recording the scattered beam to build an image.

However, one major limitation of this approach is the imaging time required, as the image is measured one pixel at a time. Improving the resolution by reducing the pin-hole dimension reduces the beam flux dramatically and requires significantly longer measurement time.

This is where the new Swansea University research makes a difference. The research group of Professor Gil Alexandrowicz from the chemistry department have developed a new – and faster – alternative method to pinhole scanning.

They demonstrated the new method using a beam of helium-3 atoms, a rare light isotope of regular helium.

The method works by passing a beam of atoms through a non-uniform magnetic field and using nuclear spin precession to encode the position of the beam particles which interact with the sample.

Morgan Lowe, a PhD student in the Swansea team, built the magnetic encoding device and performed the first set of experiments which demonstrate that the new method works.

The beam profile Mr. Lowe measured compares very well with numerical simulation calculations. The team has also used numerical simulations to show that the new magnetic encoding method should be capable of improving image resolution with a significantly smaller increase in time, in comparison to the currently used pin-hole microscopy approach.

Professor Gil Alexandrowicz of Swansea University chemistry department, lead researcher, explained:

“The method we have developed opens up various new opportunities in the field of neutral beam microscopy. It should make it possible to improve image resolution without requiring forbiddingly long measurement times, and also has the potential for enabling new contrast mechanisms based on the magnetic properties of the sample studied.

In the immediate future the new method will be further developed to create a fully working prototype magnetic encoding neutral beam microscope. This will allow testing of the resolution limits, contrast mechanisms and operation modes of the new technique.

In the more distant future, this new type of microscope should become available to scientists and engineers to characterise the topography and composition of sensitive and delicate samples they produce and/or study.”

The research has been published in the latest issue of the scientific journal Nature Communications.

####

For more information, please click here

Contacts:
Ffion White
Swansea University

Office: 01792602706

Copyright © Swansea University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Article Title

News and information


Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024


Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024


Quantum pumping in molecular junctions August 16th, 2024

Imaging


New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024


UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

Possible Futures


Groundbreaking precision in single-molecule optoelectronics August 16th, 2024


Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024


Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024


Quantum pumping in molecular junctions August 16th, 2024

Discoveries


Groundbreaking precision in single-molecule optoelectronics August 16th, 2024


Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024


Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024


Quantum pumping in molecular junctions August 16th, 2024

Announcements


Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024


Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024


Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024


UC Irvine scientists create material that can take the temperature of nanoscale objects: The technology can track small temp changes in electronic devices, biological cells August 16th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024


Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024


New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024


Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Tools


New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024


Single atoms show their true color July 5th, 2024


Atomic force microscopy in 3D July 5th, 2024


Hitachi’s holography electron microscope attains unprecedented resolution:Image acquisition and defocusing correction techniques enable observations of atomic-scale magnetic fields at never-before-seen resolution July 5th, 2024

Leave a Reply

Your email address will not be published. Required fields are marked *