Nanotechnology Now – Press Release: Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production


Home > Press > Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production

Abstract:
Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production.

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production


Perth, Australia | Posted on September 17th, 2021

Typically, scientists have been using precious metal catalysts, such as platinum, to accelerate the reaction to break water into hydrogen and oxygen. Now Curtin research has found that adding nickel and cobalt to cheaper, previously ineffective catalysts enhances their performance, which lowers the energy required to split the water and increases the yield of hydrogen.

Lead researcher Dr Guohua Jia, from Curtin’s School of Molecular and Life Sciences, said this discovery could have far-reaching implications for sustainable green fuel generation in the future.

“Our research essentially saw us take two-dimensional iron-sulfur nanocrystals, which don’t usually work as catalysts for the electricity-driven reaction that gets hydrogen from water, and add small amounts of nickel and cobalt ions. When we did this it completely transformed the poor-performing iron-sulfur into a viable and efficient catalyst,” Dr Jia said.

“Using these more abundant materials is cheaper and more efficient than the current benchmark material, ruthenium oxide, which is derived from ruthenium element and is expensive.

“Our findings not only broaden the existing “palette” of possible particle combinations, but also introduce a new, efficient catalyst that may be useful in other applications.

“It also opens new avenues for future research in the energy sector, putting Australia at the forefront of renewable and clean energy research and applications.”

Dr Jia said the next steps would be to expand and test the team’s work on a larger scale to test its commercial viability.

“Only 21% of energy is produced from renewables in the national energy market, which clearly indicates more efforts are required from Australia to make a transition from fossil fuels to clean energy,” Dr Jia said.

“But this shift is only possible when the knowledge from the research sector gets translated into real-world solutions and applications in the energy sector.”

This study was a collaboration between researchers Dr Guohua Jia and Dr Franca Jones from Curtin’s School of Molecular and Life Sciences, and Professor Zongping Shao from WA School of Mines: Minerals, Energy and Chemical Engineering.

####

For more information, please click here

Contacts:
Greta Carlshausen
Curtin University

Office: 61-892-663-549

Copyright © Curtin University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

The full paper, Ni2+/Co2+ doped Au-Fe7S8 nanoplatelets with exceptionally high oxygen evolution reaction activity, has been published in Nano Energy and is available online here:

2 Dimensional Materials

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Possible Futures

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Discoveries

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Energy

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Cheaper hydrogen production: Efficient water and urea electrolysis with bimetallic yolk-shell nanoparticles September 10th, 2021

Perovskite solar cells: Interfacial loss mechanisms revealed August 20th, 2021

The National Space Society Joins the Progressive Policy Institute in Supporting Rapid Development of Space Solar Power: Orbiting Solar Power Stations Would Help to Save the Environment August 20th, 2021

Automotive/Transportation

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

Breathing new life into fuel cells August 6th, 2021

Primers with graphene nanotubes offer a new solution for electrostatic painting of automotive parts July 16th, 2021

Fuel Cells

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Cheaper hydrogen production: Efficient water and urea electrolysis with bimetallic yolk-shell nanoparticles September 10th, 2021

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

Breathing new life into fuel cells August 6th, 2021

Leave a Reply

Your email address will not be published. Required fields are marked *