Nanotechnology Now – Press Release: How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical


Home > Press > How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical

Credit: Northern Arizona University
Credit: Northern Arizona University

Abstract:
Ever wondered why your credit score is what it is? Have you stored private information in the cloud that you want to remain that way? Thought about investing in cryptocurrency? Worried about cyber warfare?

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical


Flagstaff, AZ | Posted on April 1st, 2022

If you answered yes to any of these questions, quantum computing plays a role in your life—or at least, it will when its usage becomes practical enough to run the systems that run our daily lives.

That’s where Ryan Behunin’s work comes in.

Behunin, an assistant professor of applied physics and materials science and a researcher in NAU’s Center for Materials Interfaces in Research & Applications (¡MIRA!), explores fundamental questions about the interaction of light, sound and matter. His latest research project, “Controlling noise in quantum devices with light and sound,” was funded with an almost $500,000 NSF CAREER grant, which supports early-career faculty in their groundbreaking research.

This work targets challenges to realizing practical quantum computers by helping the building blocks of quantum computers, termed “qubits,” perform better. That is critical because quantum computers have the potential to solve certain problems that are not tractable using traditional computing technology. The challenge is that, currently, the technology is too vulnerable to disturbances in the environment that corrupt the information stored in quantum computers—too full of noise, as it were—to reach its full potential.

Behunin’s goal is to quiet that noise.

“Theoretically, quantum physics can enable powerful new computers that achieve massive exponential speedups over traditional forms of computing, permitting calculations that currently are intractable” Behunin said. “Practically, however, the very quantum features that enable these remarkable properties are rapidly erased by process termed decoherence, which is not unlike the way a plucked guitar string eventually relaxes.”

As a result, decoherence limits the lifetime of quantum states, posing challenges for practical quantum technologies. This project will show how decoherence can be controlled by manipulating sound waves.

“Noise” in quantum mechanics operates much like static on the radio, making it difficult to “hear” the signal. The most problematic source of noise for many quantum devices is from two-level tunneling states, or TLSs. They’re not well understood, but they are everywhere, and physicists have yet to find an effective way to quiet TLSs. This research will leverage the strong interaction between TLSs and sound waves to develop new techniques that control and reduce this source of noise.

The answers Behunin is looking for have implications for cybersecurity, advanced manufacturing and areas like drug development; faster, more accessible quantum computing could mean faster and more affordable creation of drugs or other organic materials.

“We can take a big step toward practical quantum technology if we can show how noise can be controlled and reduced in quantum devices,” Behunin said.

This project also will focus on giving research opportunities to students from populations that are historically underrepresented in the field of physics, including women and minority groups. In addition to its groundbreaking research, ¡MIRA!’s mission is to increase diversity in these fields. Recruiting students into labs like Behunin’s is a big part of that mission, as is outreach to K-12 students to get them excited about STEM research long before they enter college. That’s why part of this project includes Behunin teaching a free mini course on quantum physics at Tynkertopia, a nonprofit STEAM center located in Flagstaff’s Sunnyside neighborhood.

“Scientifically, we’re trying to answer deep materials science questions—namely, what are TLSs and how can we get rid of them?” Behunin said. “With regard to diversity, this project aims to engage communities that are underrepresented in the sciences. The goal is to increase access and exposure to quantum science in our underserved communities.”

####

For more information, please click here

Contacts:
Heidi Toth
Northern Arizona University

Office: 928-523-8737
Heidi Toth
Northern Arizona University

Copyright © Northern Arizona University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

News and information


When a band falls flat: Searching for flatness in materials: International collaboration, led by DIPC and Princeton, creates a catalogue of materials that could impact quantum technologies April 1st, 2022


Nano therapy for micro-preemies protects lungs, brain in lab study April 1st, 2022


Scavenger nanoparticles could make fuel cell-powered vehicles a reality April 1st, 2022


Self-standing mesoporous Si film can power lithium-ion batteries Peer-Reviewed Publication April 1st, 2022

Possible Futures


Nano therapy for micro-preemies protects lungs, brain in lab study April 1st, 2022


Scavenger nanoparticles could make fuel cell-powered vehicles a reality April 1st, 2022


Self-standing mesoporous Si film can power lithium-ion batteries Peer-Reviewed Publication April 1st, 2022


Graphene crystals grow better under copper cover April 1st, 2022

Academic/Education


Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021


NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020


Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019


A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

Chip Technology


NYU physicist to lead project that aims to enhance quantum computing: Research backed by $7.5 million multidisciplinary university research initiative award April 1st, 2022


Graphene gets enhanced by flashing: Rice process customizes one-, two- or three-element doping for applications March 31st, 2022


CEA and Startup C12 Join Forces to Develop Next-Generation Quantum Computers with Multi-Qubit Chips at Wafer Scale March 25th, 2022


Artificial neurons go quantum with photonic circuits: Quantum memristor as missing link between artificial intelligence and quantum computing March 25th, 2022

Quantum Computing


NYU physicist to lead project that aims to enhance quantum computing: Research backed by $7.5 million multidisciplinary university research initiative award April 1st, 2022


Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022


Probing the inner workings of high-fidelity quantum processors: Scientists use gate set tomography to discover and validate a silicon qubit breakthrough March 25th, 2022


“Hot” spin quantum bits in silicon transistors March 25th, 2022

Announcements


Self-standing mesoporous Si film can power lithium-ion batteries Peer-Reviewed Publication April 1st, 2022


Graphene crystals grow better under copper cover April 1st, 2022


NYU physicist to lead project that aims to enhance quantum computing: Research backed by $7.5 million multidisciplinary university research initiative award April 1st, 2022


Quantum ‘shock absorbers’ allow perovskite to exhibit superfluorescence at room temperature April 1st, 2022

Events/Classes


Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022


Invited CEA-Leti Paper at IEDM 2021 Identifies Main Challenges Facing Large-Scale Si Quantum Computing: Second Paper Details Innovative Silicon Quantum Device Integration For Effective Qubit Control December 17th, 2021


Arrowhead Pharmaceuticals to Participate in Upcoming September 2021 Conferences September 1st, 2021


UVA Engineering researchers join quest to demonstrate photonic systems-on-chip: Future applications include faster, more efficient data centers and next-generation millimeter-wave wireless communication July 30th, 2021

Leave a Reply

Your email address will not be published. Required fields are marked *