Nanotechnology Now – Press Release: Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire: The 2.6nm-long single molecule wire has quasi-metallic properties and shows an unusual increase of conductance as the wire length increases; its excellent conductivity holds great promis


Home > Press > Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire: The 2.6nm-long single molecule wire has quasi-metallic properties and shows an unusual increase of conductance as the wire length increases; its excellent conductivity holds great promis

Top: the two-step oxidation of the bis(triarylamines) molecular series. Bottom: the geometry of the highest conducting trimer (n=3) molecule in the molecular junction. Red and blue regions are artistic depictions on the coupling between the two edge states.
CREDIT
Liang Li/Columbia University
Top: the two-step oxidation of the bis(triarylamines) molecular series. Bottom: the geometry of the highest conducting trimer (n=3) molecule in the molecular junction. Red and blue regions are artistic depictions on the coupling between the two edge states.
CREDIT
Liang Li/Columbia University

Abstract:
As our devices get smaller and smaller, the use of molecules as the main components in electronic circuitry is becoming ever more critical. Over the past 10 years, researchers have been trying to use single molecules as conducting wires because of their small scale, distinct electronic characteristics, and high tunability. But in most molecular wires, as the length of the wire increases, the efficiency by which electrons are transmitted across the wire decreases exponentially.This limitation has made it especially challenging to build a long molecular wire–one that is much longer than a nanometer–that actually conducts electricity well.

Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire: The 2.6nm-long single molecule wire has quasi-metallic properties and shows an unusual increase of conductance as the wire length increases; its excellent conductivity holds great promis


New York, NY | Posted on July 8th, 2022

Columbia researchers announced today that they have built a nanowire that is 2.6 nanometers long, shows an unusual increase in conductance as the wire length increases, and has quasi-metallic properties. Its excellent conductivity holds great promise for the field of molecular electronics, enabling electronic devices to become even tinier. The study is published today in Nature Chemistry.

Molecular wire designs

The team of researchers from Columbia Engineering and Columbia’s department of chemistry, together with theorists from Germany and synthetic chemists in China, explored molecular wire designs that would support unpaired electrons on either end, as such wires would form one-dimensional analogues to topological insulators (TI) that are highly conducting through their edges but insulating in the center.

While the simplest 1D TI is made of just carbon atoms where the terminal carbons support the radical states–unpaired electrons, these molecules are generally very unstable. Carbon does not like to have unpaired electrons. Replacing the terminal carbons, where the radicals are, with nitrogen increases the molecules’ stability. “This makes 1D TIs made with carbon chains but terminated with nitrogen much more stable and we can work with these at room temperature under ambient conditions,” said the team’s co-leader Latha Venkataraman, Lawrence Gussman Professor of Applied Physics and professor of chemistry.

Breaking the exponential-decay rule

Through a combination of chemical design and experiments, the group created a series of one-dimensional TIs and successfully broke the exponential-decay rule, a formula for the process of a quantity decreasing at a rate proportional to its current value. Using the two radical-edge states, the researchers generated a highly conducting pathway through the molecules and achieved a “reversed conductance decay,” i.e. a system that shows an increasing conductance with increasing wire length.

“What’s really exciting is that our wire had a conductance at the same scale as that of a gold metal-metal point contacts, suggesting that the molecule itself shows quasi-metallic properties,” Venkataraman said. “This work demonstrates that organic molecules can behave like metals at the single-molecule level in contrast to what had been done in the past where they were primarily weakly conducting.“

The researchers designed and synthesized a bis(triarylamines) molecular series, which exhibited properties of a one-dimensional TI by chemical oxidation. They made conductance measurements of single-molecule junctions where molecules were connected to both the source and drain electrodes. Through the measurements, the team showed that the longer molecules had a higher conductance, which worked until the wire was longer than 2.5 nanometers, the diameter of a strand of human DNA.

Laying the groundwork for more technological advancements in molecular electronics

“The Venkataraman lab is always seeking to understand the interplay of physics, chemistry, and engineering of single-molecule electronic devices,” added Liang Li, a PhD student in the lab, and a co-first author of the paper. “So creating these particular wires will lay the groundwork for major scientific advances in understanding transport through these novel systems. We’re very excited about our findings because they shed light not only on fundamental physics, but also on potential applications in the future.”

The group is currently developing new designs to build molecular wires that are even longer and still highly conductive.

####

For more information, please click here

Contacts:
Holly Evarts
Columbia University School of Engineering and Applied Science

Office: 212-854-3206
Cell: 347-453-7408

Copyright © Columbia University School of Engineering and Applied Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

About the Study

Chemistry


Nano-rust: Smart additive for autonomous temperature control: FAU researchers develop a new, versatile method for temperature monitoring in materials July 8th, 2022


Nanoscale chemically ordered-disordered domains in Fe3Pt alloys and their three-dimensional interface and lattice strain May 27th, 2022

News and information


Electrically driven single microwire-based single-mode microlaser July 8th, 2022


Deep-ultraviolet nonlinear optical crystals: Concept development and materials discovery July 8th, 2022


Optical demonstration of quantum fault-tolerant threshold July 8th, 2022


Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Physics


Flexing the power of a conductive polymer: A new material holds promise for the next generation of organic electronics June 24th, 2022


Observation of fractional exclusion statistics in quantum critical matter May 27th, 2022


Finding coherence in quantum chaos: Theoretical breakthrough creates path to manipulating quantum chaos for laboratory experiments, quantum computing and black-hole research May 27th, 2022

Govt.-Legislation/Regulation/Funding/Policy


Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022


Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022


Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022


Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Possible Futures


Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022


New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022


Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022


CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Chip Technology


Electrically driven single microwire-based single-mode microlaser July 8th, 2022


Optical demonstration of quantum fault-tolerant threshold July 8th, 2022


Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Discoveries


Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022


Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022


New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022


CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Announcements


Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022


New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022


Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022


CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Optical demonstration of quantum fault-tolerant threshold July 8th, 2022


Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022


New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022


CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *