Nanotechnology Now – Press Release: Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices


Home > Press > Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices

Example of a modern semi-conductor chip
CREDIT
@Mathieu Luisier
Example of a modern semi-conductor chip
CREDIT
@Mathieu Luisier

Abstract:
The Swiss National Science Foundation has awarded Professor Mathieu Luisier more than two million Swiss francs over a period of five years to develop a computer-​based simulator that will simplify the design of electronic components and speed up their fabrication process.

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices


Lausanne, Switzerland | Posted on July 8th, 2022

Moore’s scaling law, which observes that transistor sizes decrease at an exponential rate, has seen the dimensions of these components, which form the heart of semiconductor chips, approach the atomic limit. Quantum mechanical effects dominate here and developing and producing reliable devices at this scale is complicated—Intel, for instance, had to delay introduction of its 7-nanometer chip by four years while it went back to the drawing board on transistor design.

While complicated, it’s also the way ahead: smaller transistors mean that more can be fit onto a piece of silicon, making it possible to build more powerful and complex components. Luisier envisions, for example, the co-integration of light emission/detection modules that enable high-speed intra-chip communication, thermoelectric generators that help recycle the heat dissipated by microprocessors and non-volatile memories that will allow for energy-efficient data storage.

These innovations and new functionalities will only be possible though if novel materials such as, for example, two-dimensional materials, inorganic compounds such as BaTiO3 and complex oxides can be combined with the silicon that forms the basis of these chips. In addition to the integration of novel materials, all of these functionalities involve electrical, optical, and thermal effects. They lead to important interactions between electrons, phonons, and photons that could, in turn, have a negative impact on the performance of electronic devices and so should be engineered and controlled already during the initial design phase.

Moore’s law has held until now, Luisier says, because of the continuous adaptation of transistor fabrication recipes and the gradual introduction of technology boosters such as strain or 3D FinFETs. This progress, while driven by the intuition of visionary researchers, has been underpinned by classical technology computer aided design (TCAD) tools that served to validate new ideas.

Device engineers have however realized that such design approaches cannot handle the atomic scale because of the strong influence of quantum mechanical effects. Combining multiple functionalities, mixing heterogeneous materials and the close interaction between electrical, thermal and optical phenomena complicate the situation further. The design of next-generation chips, Luisier says, will depend on the availability of advanced modelling tools that can be used during the design process to accurately predict the characteristics of multi-functional, multi-material nano-devices. While more advanced modelling tools exist—nicluding one, OMEN, developed by Luisier himself—their practical use is limited by various considerations. In some cases, they can only be used in tiny structures of fewer than 1,000 atoms, use empirical parameters as inputs, or ignore certain particle-particle interactions, for instance. Researchers need a new class of device simulators with enhanced modelling capabilities.

This is where the SNSF-funded Quantum Transport Simulations at the Exascale and Beyond project comes in—its ultimate goal is to go “beyond state-of-the-art” with the development and release of an open source, general-purpose, portable, scalable, and advanced device simulator, “QuaTrEx”. The tool will feature unique abilities and set new standards in terms of simulation capabilities, code implementation and device applications.

“By accounting for the proper physics, by offering a large palette of device geometries, by leveraging all types of computing resources, and by being released as an open-source software, the proposed QuaTrEx tool has the potential to accompany the semiconductor industry during at least 20 years, save it from design issues that might result from inaccurate predictions provided by standard device simulators, and pave the way for next-generation semiconductor chips,” Luisier said.

The SNSF funding will support two post-docs and three PhD students throughout the project duration.

The SNSF Advanced Grants were introduced in 2021 to provide researchers at Swiss institutions a substitute for European Research Council Advanced Grants, for which they are currently ineligible to apply: Switzerland is considered a non-associated third country by the EU’s Horizon Europe research program. Of 232 Advanced Grant applications submitted to the SNSF last year, 24 qualified for funding.

####

For more information, please click here

Contacts:
arey Sargent
National Centre of Competence in Research (NCCR) MARVEL

Office: 21 693-4656

Copyright © National Centre of Competence in Research (NCCR) MARVEL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

News and information


Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022


New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022


Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire: The 2.6nm-long single molecule wire has quasi-metallic properties and shows an unusual increase of conductance as the wire length increases; its excellent conductivity holds great promis July 8th, 2022


CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Software


CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022


Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021


Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021


Nanosoft releases nanoCAD Plus 20 as a major update November 20th, 2020

Possible Futures


Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022


New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022


Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire: The 2.6nm-long single molecule wire has quasi-metallic properties and shows an unusual increase of conductance as the wire length increases; its excellent conductivity holds great promis July 8th, 2022


CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Announcements


Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022


New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022


Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire: The 2.6nm-long single molecule wire has quasi-metallic properties and shows an unusual increase of conductance as the wire length increases; its excellent conductivity holds great promis July 8th, 2022


CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records


Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022


Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022


Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022


National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *