Nanotechnology Now – Press Release: ‘Nanochains’ could increase battery capacity, cut charging time


Home > Press > ‘Nanochains’ could increase battery capacity, cut charging time

Artistic depiction of a coin cell battery with a copper electrode (left) containing a black nanochain structure, which researchers have discovered could increase the capacity of a battery and cut charging time.

CREDIT
Purdue University illustration/Henry Hamann
Artistic depiction of a coin cell battery with a copper electrode (left) containing a black nanochain structure, which researchers have discovered could increase the capacity of a battery and cut charging time.

CREDIT
Purdue University illustration/Henry Hamann

Abstract:
Three-Dimensional Antimony Nanochains for Lithium-Ion Storage

Jassiel R. Rodriguez, Henry J. Hamann, Garrett M. Mitchell, Volkan Ortalan, Vilas G. Pol, P. Veeraraghavan Ramachandran

Purdue University, West Lafayette, IN, USA

DOI: 10.1021/acsanm.9b01316

Three-dimensional antimony nanochain architectures with a rhombohedral phase, possessing particle sizes of ~30 nm, have been prepared via ammonia-borane reduction of SbCl3 in an aqueous medium, followed by nucleation and capping processes. These offer adequate space to abate the large volumetric expansion during lithiation. Lithium-ion batteries fabricated with these antimony nanochains exhibited a stable specific charge capacity of 523 mAh g-1 at a C rate of 0.5 C with a Coulombic efficiency of 99.8% and a capacity retention of 92% after 100 cycles.

‘Nanochains’ could increase battery capacity, cut charging time


West Lafayette, IN | Posted on September 20th, 2019

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery’s negative electrode material. If the battery runs out of these ions, it can’t generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in today’s batteries.

Purdue University scientists and engineers have introduced a potential way that these materials could be restructured into a new electrode design that would allow them to increase a battery’s lifespan, make it more stable and shorten its charging time.

The study, appearing as the cover of the September issue of Applied Nano Materials, created a net-like structure, called a “nanochain,” of antimony, a metalloid known to enhance lithium ion charge capacity in batteries.

The researchers compared the nanochain electrodes to graphite electrodes, finding that when coin cell batteries with the nanochain electrode were only charged for 30 minutes, they achieved double the lithium-ion capacity for 100 charge-discharge cycles.

Some types of commercial batteries already use carbon-metal composites similar to antimony metal negative electrodes, but the material tends to expand up to three times as it takes in lithium ions, causing it to become a safety hazard as the battery charges.

“You want to accommodate that type of expansion in your smartphone batteries. That way you’re not carrying around something unsafe,” said Vilas Pol, a Purdue associate professor of chemical engineering.

Through applying chemical compounds – a reducing agent and a nucleating agent – Purdue scientists connected the tiny antimony particles into a nanochain shape that would accommodate the required expansion. The particular reducing agent the team used, ammonia-borane, is responsible for creating the empty spaces – the pores inside the nanochain – that accommodate expansion and suppress electrode failure.

The team applied ammonia-borane to several different compounds of antimony, finding that only antimony-chloride produced the nanochain structure.

“Our procedure to make the nanoparticles consistently provides the chain structures,” said P. V. Ramachandran, a professor of organic chemistry at Purdue.

The nanochain also keeps lithium ion capacity stable for at least 100 charging-discharging cycles. “There’s essentially no change from cycle 1 to cycle 100, so we have no reason to think that cycle 102 won’t be the same,” Pol said.

Henry Hamann, a chemistry graduate student at Purdue, synthesized the antimony nanochain structure and Jassiel Rodriguez, a Purdue chemical engineering postdoctoral candidate, tested the electrochemical battery performance.

The electrode design has the potential to be scalable for larger batteries, the researchers say. The team plans to test the design in pouch cell batteries next.

###

This work was financially supported by the Herbert C. Brown Center for Borane Research.

####

For more information, please click here

Contacts:
Kayla Wiles

765-494-2432

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

RELATED JOURNAL ARTICLE:

News and information

Machine learning at the quantum lab September 27th, 2019

CCNY physicists score double hit in LED research September 27th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: ‘Precision Medicine’ approach underpins UT Austin engineers’ development of multifunctional nanogel September 27th, 2019

Probes shed new light on Alzheimer’s cause: Rice University scientists synthesize fluorescent ruthenium tags to track toxic amyloids in lab September 27th, 2019

Possible Futures

Machine learning at the quantum lab September 27th, 2019

CCNY physicists score double hit in LED research September 27th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: ‘Precision Medicine’ approach underpins UT Austin engineers’ development of multifunctional nanogel September 27th, 2019

Probes shed new light on Alzheimer’s cause: Rice University scientists synthesize fluorescent ruthenium tags to track toxic amyloids in lab September 27th, 2019

Discoveries

Machine learning at the quantum lab September 27th, 2019

CCNY physicists score double hit in LED research September 27th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: ‘Precision Medicine’ approach underpins UT Austin engineers’ development of multifunctional nanogel September 27th, 2019

Probes shed new light on Alzheimer’s cause: Rice University scientists synthesize fluorescent ruthenium tags to track toxic amyloids in lab September 27th, 2019

Announcements

Machine learning at the quantum lab September 27th, 2019

CCNY physicists score double hit in LED research September 27th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: ‘Precision Medicine’ approach underpins UT Austin engineers’ development of multifunctional nanogel September 27th, 2019

Probes shed new light on Alzheimer’s cause: Rice University scientists synthesize fluorescent ruthenium tags to track toxic amyloids in lab September 27th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning at the quantum lab September 27th, 2019

CCNY physicists score double hit in LED research September 27th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: ‘Precision Medicine’ approach underpins UT Austin engineers’ development of multifunctional nanogel September 27th, 2019

Probes shed new light on Alzheimer’s cause: Rice University scientists synthesize fluorescent ruthenium tags to track toxic amyloids in lab September 27th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Nanoparticles in lithium-sulphur batteries detected with neutron experiment September 6th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Machine learning at the quantum lab September 27th, 2019

Novel nanogels hold promise for improved drug delivery to cancer patients: ‘Precision Medicine’ approach underpins UT Austin engineers’ development of multifunctional nanogel September 27th, 2019

Probes shed new light on Alzheimer’s cause: Rice University scientists synthesize fluorescent ruthenium tags to track toxic amyloids in lab September 27th, 2019

One-atom switch supercharges fluorescent dyes: Rice University lab discovers simple technique to make biocompatible ‘turn-on’ dyes September 13th, 2019

Leave a Reply

Your email address will not be published. Required fields are marked *