Home > Press > Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes.
A color map illustrates the inherent colors of 466 types of carbon nanotubes with unique (n,m) designations based on their chiral angle and diameter. (Image courtesy of Kauppinen Group/Aalto University) |
Abstract:
Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes.
Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes.
Houston, TX | Posted on December 14th, 2020
The nanotube color atlas is detailed in a study in Advanced Materials about a new method to predict the specific colors of thin films made by combining any of the 466 varieties. The research was conducted by researchers from Aalto University in Finland, Rice University and Peking University in China.
“Carbon, which we see as black, can appear transparent or take on any color of the rainbow,” said Aalto physicist Esko Kauppinen, the corresponding author of the study. “The sheet appears black if light is completely absorbed by carbon nanotubes in the sheet. If less than about half of the light is absorbed in the nanotubes, the sheet looks transparent. When the atomic structure of the nanotubes causes only certain colors of light, or wavelengths, to be absorbed, the wavelengths that are not absorbed are reflected as visible colors.”
Carbon nanotubes are long, hollow carbon molecules, similar in shape to a garden hose but with sides just one atom thick and diameters about 50,000 times smaller than a human hair. The outer walls of nanotubes are made of rolled graphene. And the wrapping angle of the graphene can vary, much like the angle of a roll of holiday gift wrap paper. If the gift wrap is rolled carefully, at zero angle, the ends of the paper will align with each side of the gift wrap tube. If the paper is wound carelessly, at an angle, the paper will overhang on one end of the tube.
The atomic structure and electronic behavior of each carbon nanotube is dictated by its wrapping angle, or chirality, and its diameter. The two traits are represented in a “(n,m)” numbering system that catalogs 466 varieties of nanotubes, each with a characteristic combination of chirality and diameter. Each (n,m) type of nanotube has a characteristic color.
Kauppinen’s research group has studied carbon nanotubes and nanotube thin films for years, and it previously succeeded in mastering the fabrication of colored nanotube thin films that appeared green, brown and silver-grey.
In the new study, Kauppinen’s team examined the relationship between the spectrum of absorbed light and the visual color of various thicknesses of dry nanotube films and developed a quantitative model that can unambiguously identify the coloration mechanism for nanotube films and predict the specific colors of films that combine tubes with different inherent colors and (n,m) designations.
Rice engineer and physicist Junichiro Kono, whose lab solved the mystery of colorful armchair nanotubes in 2012, provided films made solely of (6,5) nanotubes that were used to calibrate and verify the Aalto model. Researchers from Aalto and Peking universities used the model to calculate the absorption of the Rice film and its visual color. Experiments showed that the measured color of the film corresponded quite closely to the color forecast by the model.
The Aalto model shows that the thickness of a nanotube film, as well as the color of nanotubes it contains, affects the film’s absorption of light. Aalto’s atlas of 466 colors of nanotube films comes from combining different tubes. The research showed that the thinnest and most colorful tubes affect visible light more than those with larger diameters and faded colors.
“Esko’s group did an excellent job in theoretically explaining the colors, quantitatively, which really differentiates this work from previous studies on nanotube fluorescence and coloration,” Kono said.
Since 2013, Kono’s lab has pioneered a method for making highly ordered 2D nanotube films. Kono said he had hoped to supply Kauppinen’s team with highly ordered 2D crystalline films of nanotubes of a single chirality.
“That was the original idea, but unfortunately, we did not have appropriate single-chirality aligned films at that time,” Kono said. “In the future, our collaboration plans to extend this work to study polarization-dependent colors in highly ordered 2D crystalline films.”
The experimental method the Aalto researchers used to grow nanotubes for their films was the same as in their previous studies: Nanotubes grow from carbon monoxide gas and iron catalysts in a reactor that is heated to more than 850 degrees Celsius. The growth of nanotubes with different colors and (n,m) designations is regulated with the help of carbon dioxide that is added to the reactor.
“Since the previous study, we have pondered how we might explain the emergence of the colors of the nanotubes,” said Nan Wei, an assistant research professor at Peking University who previously worked as a postdoctoral researcher at Aalto. “Of the allotropes of carbon, graphite and charcoal are black, and pure diamonds are colorless to the human eye. However, now we noticed that single-walled carbon nanotubes can take on any color: for example, red, blue, green or brown.”
Kauppinen said colored thin films of nanotubes are pliable and ductile and could be useful in colored electronics structures and in solar cells.
“The color of a screen could be modified with the help of a tactile sensor in mobile phones, other touch screens or on top of window glass, for example,” he said.
Kauppinen said the research can also provide a foundation for new kinds of environmentally friendly dyes.
Kono is a professor of electrical and computer engineering, physics and astronomy, and materials science and nanoengineering and the director of Rice’s Applied Physics Graduate Program.
Additional study co-authors include Natsumi Komatsu and Alina Lyuleeva, both of Rice; Weilu Gao, formerly of Rice and now an assistant professor of electrical and computer engineering at the University of Utah; Yongping Liao, Qiang Zhang, Aqeel Hussain, Er-Xiong Ding, Janne Halme and Hua Jiang, all of Aalto; Fengrui Yao and Kaihui Liu, both of Peking University; and Ying Tian of Dalian Maritime University in China.
The research was funded by the European Union (FP7-604472), Aalto University’s Energy Efficiency Research Program, the Academy of Finland (3165720-CNTstress), the Finnish Funding Agency for Technology and Innovation (3303/31/2015-CNT-PV, 1882/31/2016-FEDOC) and the Alberta Technical University of Munich International Graduate School for Hybrid Functional Materials.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nations top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,978 undergraduates and 3,192 graduate students, Rices undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 1 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplingers Personal Finance.
Follow Rice News and Media Relations via Twitter @RiceUNews.
For more information, please click here
Contacts:
Jade Boyd
713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
The DOI of the Advanced Materials paper is: 10.1002/adma.202006395
News and information
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Govt.-Legislation/Regulation/Funding/Policy
Weak force has strong impact on nanosheets: Rice lab finds van der Waals force can deform nanoscale silver for optics, catalytic use December 15th, 2020
Faraday fabrics? MXene-coated fabric could contain electronic interference in wearable devices December 11th, 2020
Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020
Possible Futures
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Chip Technology
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Nanotubes/Buckyballs/Fullerenes/Nanorods
Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020
Synthesis of organophilic carbon nanodots with multi-band emission from tomato leaves August 21st, 2020
Rescue operations become faster thanks to graphene nanotubes August 20th, 2020
No limit yet for carbon nanotube fibers: Rice lab makes case for high-performance carbon nanotube fibers for industry August 17th, 2020
Sensors
An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020
Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020
Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020
Discoveries
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Announcements
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Nanotechnology — nanoparticles as weapons against cancer December 18th, 2020
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
Energy
Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020
CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Weak force has strong impact on nanosheets: Rice lab finds van der Waals force can deform nanoscale silver for optics, catalytic use December 15th, 2020
An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020
Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020
Starship Takes Flight: High-Altitude Test Flight is a Huge Step Toward National Space Society Goals of Space Settlement December 10th, 2020
Research partnerships
An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020
Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020
New platform generates hybrid light-matter excitations in highly charged graphene December 2nd, 2020
Solar/Photovoltaic
Chemists get peek at novel fluorescence: Rice University scientists discover delayed phenomenon in carbon nanotubes December 3rd, 2020
CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics December 1st, 2020
One-way street for electrons: Scientists observe directed energy transport between neighbouring molecules in a nanomaterial November 27th, 2020
Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020