Nanotechnology Now – Press Release: New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs


Home > Press > New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs

The illustration shows a microplate well in the foreground, while in the background a tested sample receives red laser light and releases twisted blue light. Image credit: Ventsislav Valev, Kylian Valev and Lukas Ohnoutek, University of Bath
The illustration shows a microplate well in the foreground, while in the background a tested sample receives red laser light and releases twisted blue light. Image credit: Ventsislav Valev, Kylian Valev and Lukas Ohnoutek, University of Bath

Abstract:
Twisted nanoscale semiconductors manipulate light in a new way, researchers at the University of Bath and the University of Michigan have shown. The effect could be harnessed to accelerate the discovery and development of life-saving medicines as well as photonic technologies.

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs


Ann Arbor, MI | Posted on January 14th, 2022

Specifically, the photonic effect could help enable rapid development and screening of new antibiotics and other drugs through automation—essentially, robotic chemists. It offers a new analysis tool for high-throughput screening, a method to analyze vast libraries of chemical compounds. A tiny sample of each compound fills a well on a microplate. The wells can be as small as a cubic millimeter, and a plate the size of a chocolate bar can contain a thousand of them.

“To meet the requirements of the emerging robotized chemistry, wells are getting really tiny—too small for current analytical methods,” said Ventsislav Valev, professor of physics at the University of Bath in the U.K. and co-corresponding author of the paper in Nature Photonics. “So, fundamentally new methods are needed to analyze would-be drugs.”

One of the key measurements in drug analysis is chirality, or which way the molecule twists. Biological systems, including the human body, typically prefer one direction over the other, a right-handed or left-handed curl. At best, a drug molecule with the wrong twist does nothing, but at worst, it can cause harm. The effect discovered by the researchers allows chirality to be measured in volumes that are 10,000 times smaller than a cubic millimeter.

“The small volumes possible for registration of these effects are the game changing property that enables the researchers to use very small amounts of expensive drugs and collect thousands times more data,” said Nicholas Kotov, the Irving Langmuir Distinguished University Professor of Chemical Sciences and Engineering at the University of Michigan and co-corresponding author of the paper.

The method relies on a structure inspired by biological designs, developed in Kotov’s lab. Cadmium telluride, a semiconductor commonly used in solar cells, is shaped into nanoparticles resembling short segments of twisted ribbon. These assemble into helices, mimicking the way proteins assemble.

“Being illuminated with red light, the small semiconductor helices generate new light that is blue and twisted. The blue light is also emitted in a specific direction, which makes it easy to collect and analyze,” Kotov said. “The trifecta of unusual optical effects drastically reduces the noise that other nanoscale molecules and particles in biological fluids may cause.”

To use these effects in high-throughput screening for drug discovery, the nanoparticles assembling into helices may be mixed with a drug candidate. When the nanohelices form a lock-and-key structure with the drug, simulating the drug target, the twist of the nanohlices will change dramatically. This change in the twist can be measured through the blue light.

“Applications to drugs are now only a question of technological development. Our next step is to seek funding for this development,” said Valev, who led the photonic experiments at Bath.

The generation of the blue light from red is also helpful in drug development in samples approaching the complexity of biological tissues. The separation of two colors of light is technically easy and helps reduce light noise, false positives and false negatives. While the team attempted experiments testing the biological concept, COVID-19 closures and delays caused the protein samples to spoil each time.

“The postdoc on my side, Ji-Young Kim, and Ph.D. student Lukas Ohnoutek on the Bath side, they are heroes. They were trying to work in some night shifts, even when it was very restricted,” Kotov said.

The research was funded by the Royal Society, Science and Technology Facilities Council, and Engineering and Physical Science Research Council in the U.K., and the U.S. Office of Naval Research. Kotov is also the Joseph B. and Florence V. Cejka Professor of Engineering and professor of chemical engineering, materials science and engineering, and macromolecular science and engineering.

The University of Michigan has filed for patent protection and is seeking partners to bring the new technology to market.

####

For more information, please click here

Contacts:
Katherine McAlpine
University of Michigan

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Study: Third-harmonic Mie scattering from semiconductor nanohelices (DOI: 10.1038/s41566-021-00916-6):

News and information


Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022


Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022


NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022


Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Possible Futures


Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022


UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022


The free-energy principle explains the brain January 14th, 2022


JEOL Introduces New Scanning Electron Microscope with “Simple SEM” Automation and Live Elemental and 3D Analysis January 14th, 2022

Nanomedicine


Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022


UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022


Preserving the goods: A new technique for isolating intact lysosomes from cell cultures: Scientists advance the study of fragile digestive organelles by developing strategy to rapidly extract them from cells using magnetic nanoparticles January 7th, 2022


In vivo generation of engineered CAR T cells can repair a broken heart January 7th, 2022

Discoveries


Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022


Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022


UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022


The free-energy principle explains the brain January 14th, 2022

Announcements


Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022


UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022


The free-energy principle explains the brain January 14th, 2022


JEOL Introduces New Scanning Electron Microscope with “Simple SEM” Automation and Live Elemental and 3D Analysis January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022


Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022


Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022


UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

Nanobiotechnology


Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022


UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022


Preserving the goods: A new technique for isolating intact lysosomes from cell cultures: Scientists advance the study of fragile digestive organelles by developing strategy to rapidly extract them from cells using magnetic nanoparticles January 7th, 2022


In vivo generation of engineered CAR T cells can repair a broken heart January 7th, 2022

Photonics/Optics/Lasers


Super-resolved imaging of a single cold atom on a nanosecond timescale January 7th, 2022


Using magnets to toggle nanolasers leads to better photonics: Controlling nanolasers with magnets lays the groundwork for more robust optical signalling December 24th, 2021


Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021


Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Leave a Reply

Your email address will not be published. Required fields are marked *