Nanotechnology Now – Press Release: NIST’s superconducting hardware could scale up brain-inspired computing


Home > Press > NIST’s superconducting hardware could scale up brain-inspired computing

Artistic rendering of how superconducting circuits that mimic synapses (connections between neurons in the brain) might be used to create artificial optoelectronic neurons of the future.

CREDIT
J. Chiles and J. Shainline/NIST
Artistic rendering of how superconducting circuits that mimic synapses (connections between neurons in the brain) might be used to create artificial optoelectronic neurons of the future.

CREDIT
J. Chiles and J. Shainline/NIST

Abstract:
Scientists have long looked to the brain as an inspiration for designing computing systems. Some researchers have recently gone even further by making computer hardware with a brainlike structure. These “neuromorphic chips” have already shown great promise, but they have used conventional digital electronics, limiting their complexity and speed. As the chips become larger and more complex, the signals between their individual components become backed up like cars on a gridlocked highway and reduce computation to a crawl.

NIST’s superconducting hardware could scale up brain-inspired computing


Gaithersburg, MD | Posted on October 7th, 2022

Now, a team at the National Institute of Standards and Technology (NIST) has demonstrated a solution to these communication challenges that may someday allow artificial neural systems to operate 100,000 times faster than the human brain.

The human brain is a network of about 86 billion cells called neurons, each of which can have thousands of connections (known as synapses) with its neighbors. The neurons communicate with each other using short electrical pulses called spikes to create rich, time-varying activity patterns that form the basis of cognition. In neuromorphic chips, electronic components act as artificial neurons, routing spiking signals through a brainlike network.

Doing away with conventional electronic communication infrastructure, researchers have designed networks with tiny light sources at each neuron that broadcast optical signals to thousands of connections. This scheme can be especially energy-efficient if superconducting devices are used to detect single particles of light known as photons — the smallest possible optical signal that could be used to represent a spike.

In a new Nature Electronics paper, NIST researchers have achieved for the first time a circuit that behaves much like a biological synapse yet uses just single photons to transmit and receive signals. Such a feat is possible using superconducting single-photon detectors. The computation in the NIST circuit occurs where a single-photon detector meets a superconducting circuit element called a Josephson junction. A Josephson junction is a sandwich of superconducting materials separated by a thin insulating film. If the current through the sandwich exceeds a certain threshold value, the Josephson junction begins to produce small voltage pulses called fluxons. Upon detecting a photon, the single-photon detector pushes the Josephson junction over this threshold and fluxons are accumulated as current in a superconducting loop. Researchers can tune the amount of current added to the loop per photon by applying a bias (an external current source powering the circuits) to one of the junctions. This is called the synaptic weight.

This behavior is similar to that of biological synapses. The stored current serves as a form of short-term memory, as it provides a record of how many times the neuron produced a spike in the near past. The duration of this memory is set by the time it takes for the electric current to decay in the superconducting loops, which the NIST team demonstrated can vary from hundreds of nanoseconds to milliseconds, and likely beyond. This means the hardware could be matched to problems occurring at many different time scales — from high-speed industrial control systems to more leisurely conversations with humans. The ability to set different weights by changing the bias to the Josephson junctions permits a longer-term memory that can be used to make the networks programmable so that the same network could solve many different problems.

Synapses are a crucial computational component of the brain, so this demonstration of superconducting single-photon synapses is an important milestone on the path to realizing the team’s full vision of superconducting optoelectronic networks. Yet the pursuit is far from complete. The team’s next milestone will be to combine these synapses with on-chip sources of light to demonstrate full superconducting optoelectronic neurons.

“We could use what we’ve demonstrated here to solve computational problems, but the scale would be limited,” NIST project leader Jeff Shainline said. “Our next goal is to combine this advance in superconducting electronics with semiconductor light sources. That will allow us to achieve communication between many more elements and solve large, consequential problems.”

The team has already demonstrated light sources that could be used in a full system, but further work is required to integrate all the components on a single chip. The synapses themselves could be improved by using detector materials that operate at higher temperatures than the present system, and the team is also exploring techniques to implement synaptic weighting in larger-scale neuromorphic chips.

The work was funded in part by the Defense Advanced Research Projects Agency.

####

For more information, please click here

Contacts:
Ben Stein
National Institute of Standards and Technology (NIST)

Office: 301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information


The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022


Taking salt out of the water equation October 7th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Superconductivity


The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

Govt.-Legislation/Regulation/Funding/Policy


Underwater movement sensor alerts when a swimmer might be drowning October 7th, 2022


Nanoscope received NIH support for its first-in-class engineered mechanosensitive channel based gene therapy for glaucoma: Nanoscope received Direct Phase II SBIR grant from National Institutes of Health (NIH) for developing an innovative approach to autonomously regulate pressur October 7th, 2022


Boron nitride with a twist could lead to new way to make qubits: Easy control over bright emissions from the crystalline material offer a route toward scalable quantum computing and sensing October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022

Possible Futures


Underwater movement sensor alerts when a swimmer might be drowning October 7th, 2022


Scientists design electrolyte for lithium metal anodes for use in lithium metal batteries: Potential applications in metal battery systems that provide large-scale, sustainable energy October 7th, 2022


Nanoscope received NIH support for its first-in-class engineered mechanosensitive channel based gene therapy for glaucoma: Nanoscope received Direct Phase II SBIR grant from National Institutes of Health (NIH) for developing an innovative approach to autonomously regulate pressur October 7th, 2022


Boron nitride with a twist could lead to new way to make qubits: Easy control over bright emissions from the crystalline material offer a route toward scalable quantum computing and sensing October 7th, 2022

Chip Technology


Boron nitride with a twist could lead to new way to make qubits: Easy control over bright emissions from the crystalline material offer a route toward scalable quantum computing and sensing October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022


ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Discoveries


The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022


Taking salt out of the water equation October 7th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Announcements


The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022


Taking salt out of the water equation October 7th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022


Disposable electronics on a simple sheet of paper October 7th, 2022


Taking salt out of the water equation October 7th, 2022


Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Military


Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022


Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022


Understanding outsize role of nanopores: New research reveals differences in pH, and more, about these previously mysterious environments August 26th, 2022


New chip ramps up AI computing efficiency August 19th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *