Home > Press > NIST sensor experts invent supercool mini thermometer
Two of NIST’s superconducting thermometers for measuring cryogenic temperatures are glued to the lower left and upper right of this amplifier. The miniature thermometers, made of niobium on a layer of silicon dioxide, measure the temperature of the amplifier or other device based on a frequency signal.
CREDIT Wheeler/NIST |
Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have invented a miniature thermometer with big potential applications such as monitoring the temperature of processor chips in superconductor-based quantum computers, which must stay cold to work properly.
NIST sensor experts invent supercool mini thermometer
Gaithersburg, MD | Posted on November 17th, 2020
NIST’s superconducting thermometer measures temperatures below 1 Kelvin (minus 272.15 ?C or minus 457.87 ?F), down to 50 milliKelvin (mK) and potentially 5 mK. It is smaller, faster and more convenient than conventional cryogenic thermometers for chip-scale devices and could be mass produced. NIST researchers describe the design and operation in a new journal paper [https://aip.scitation.org/doi/10.1063/5.0029351].
Just 2.5 by 1.15 millimeters in size, the new thermometer can be embedded in or stuck to another cryogenic microwave device to measure its temperature when mounted on a chip. The researchers used the thermometer to demonstrate fast, accurate measurements of the heating of a superconducting microwave amplifier.
The technology is a spinoff of NIST’s custom superconducting sensors for telescope cameras, specifically microwave detectors delivered for the BLAST balloon [https://sites.northwestern.edu/blast/] and [http://toltec.astro.umass.edu/].
“This was a fun idea that quickly grew into something very helpful,” group leader Joel Ullom said. “The thermometer allows researchers to measure the temperature of a wide range of components in their test packages at very little cost and without introducing a large number of additional electrical connections. This has the potential to benefit researchers working in quantum computing or using low-temperature sensors in a wide range of fields.”
The thermometer consists of a superconducting niobium resonator coated with silicon dioxide. The coating interacts with the resonator to shift the frequency at which it naturally vibrates. Scientists suspect this is due to atoms “tunneling” between two sites, a quantum-mechanical effect.
The NIST thermometer is based on a new application of the principle that the natural frequency of the resonator depends on the temperature. The thermometer maps changes in frequency, as measured by electronics, to a temperature. By contrast, conventional thermometers for sub-Kelvin temperatures are based on electrical resistance. They require wiring routed to room-temperature electronics, adding complexity and potentially causing heating and interference.
The NIST thermometer measures temperature in about 5 milliseconds (thousandths of a second), much faster than most conventional resistive thermometers at about one-tenth of a second. The NIST thermometers are also easy to fabricate in only a single process step. They can be mass produced, with more than 1,200 fitting on a 3-inch (approximately 75-millimeter) silicon wafer.
####
For more information, please click here
Contacts:
Laura Ost
@NIST
Copyright © National Institute of Standards and Technology (NIST)
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics November 20th, 2020
Staying ahead of the curve with 3D curved graphene November 20th, 2020
Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020
Nanosoft releases nanoCAD Plus 20 as a major update November 20th, 2020
Quantum Physics
CCNY & partners in quantum algorithm breakthrough November 13th, 2020
Smaller than EverExploring the Unusual Properties of Quantum-sized Materials November 13th, 2020
A new candidate material for quantum spin liquids November 12th, 2020
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
Arrowhead Interim Clinical Data Demonstrate ARO-AAT Treatment Improved Multiple Biomarkers of Alpha-1 Liver Disease November 13th, 2020
Face mask aims to deactivate virus to protect others: Antiviral layer attacks respiratory droplets to make mask wearer less infectious October 30th, 2020
Flash graphene rocks strategy for plastic waste: Rice University lab detours potential environmental hazard into useful material October 30th, 2020
Possible Futures
New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics November 20th, 2020
Staying ahead of the curve with 3D curved graphene November 20th, 2020
Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020
Nanosoft releases nanoCAD Plus 20 as a major update November 20th, 2020
Chip Technology
Staying ahead of the curve with 3D curved graphene November 20th, 2020
Manchester group discover new family of quasiparticles in graphene-based materials: Findings to help achieve Holy Grail of 2D materials – superfast electronic devices November 13th, 2020
Smaller than EverExploring the Unusual Properties of Quantum-sized Materials November 13th, 2020
Quantum Computing
CCNY & partners in quantum algorithm breakthrough November 13th, 2020
A new candidate material for quantum spin liquids November 12th, 2020
Discoveries
New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics November 20th, 2020
Staying ahead of the curve with 3D curved graphene November 20th, 2020
Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020
Announcements
New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics November 20th, 2020
Staying ahead of the curve with 3D curved graphene November 20th, 2020
Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020
Nanosoft releases nanoCAD Plus 20 as a major update November 20th, 2020
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics November 20th, 2020
Staying ahead of the curve with 3D curved graphene November 20th, 2020
Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020
Quantum nanoscience
Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020
CCNY & partners in quantum algorithm breakthrough November 13th, 2020
Smaller than EverExploring the Unusual Properties of Quantum-sized Materials November 13th, 2020
A new candidate material for quantum spin liquids November 12th, 2020