Nanotechnology Now – Press Release: NRL discovers two-dimensional waveguides


Home > Press > NRL discovers two-dimensional waveguides

Confocal microscope image of waveguided photoluminescence in a hexagonal boron nitride waveguide. The lobe-pattern around the edges is reminiscent of koi circling a pond. Image taken by Samuel LaGasse in April 2023.

CREDIT
U.S. Naval Research Laboratory/Samuel LaGasse
Confocal microscope image of waveguided photoluminescence in a hexagonal boron nitride waveguide. The lobe-pattern around the edges is reminiscent of koi circling a pond. Image taken by Samuel LaGasse in April 2023.

CREDIT
U.S. Naval Research Laboratory/Samuel LaGasse

Abstract:
The U.S. Naval Research Laboratory (NRL), in collaboration with Kansas State University, announce the discovery of slab waveguides based on the two-dimensional material hexagonal boron nitride. This milestone has been reported in the journal Advanced Materials.

NRL discovers two-dimensional waveguides


Washington, DC | Posted on February 16th, 2024

Two-dimensional (2D) materials are a class of materials which can be reduced to the monolayer limit by mechanically peeling the layers apart. The weak interlayer attractions, or van der Waals attraction, allows the layers to be separated via the so-called “Scotch tape” method. The most famous 2D material, graphene, is a semimetallic material consisting of a single layer of carbon atoms. Recently, other 2D materials including semiconducting transition metal dichalcogenides (TMDs) and insulating hexagonal boron nitride (hBN) have also garnered attention. When reduced near the monolayer limit, 2D materials have unique nanoscale properties which are appealing for creating atomically thin electronic and optical devices.

“We knew using hexagonal boron nitride would lead to outstanding optical properties in our samples, none of us expected that it would also act a waveguide,” said Samuel Lagasse, Ph.D., Novel Materials and Applications Division. “Since hBN is used so widely in 2D material–based devices, this novel usage as an optical waveguide potentially has wide-ranging impacts.“

Graphene and TMD monolayers are both extremely sensitive to the surrounding environment. Therefore, researchers have sought to protect these materials by encapsulating them in a passivating layer. This is where hBN comes in: layers of hBN are able to “screen” impurities near graphene or TMD layers, leading to fantastic properties. In recent NRL-led work, the thickness of hBN surrounding a light-emitting TMD layer was carefully tuned in order to support optical waveguide modes.

Researchers at NRL carefully assembled stacks of 2D materials, known as “van der Waals heterostructures.” These heterostructures can have specialized properties due to the layering. Slabs of hBN were placed around single layers of TMDs, such as molybdenum diselenide or tungsten diselenide, which can emit light in the visible and near-infrared. The slabs of hBN were carefully tuned in thickness so that the emitted light would be trapped within the hBN and waveguided. When the light waveguides to the edge of the hBN, it can scatter out and be detected by a microscope.

The research was motivated by the challenges of optical measurements of 2D TMDs. When laser light is focused on TMDs, particles known as excitons are generated. Most excitons emit light out of the plane of the TMD, however an elusive type of exciton known as a “dark” exciton exists in some TMDs, emits in the plane of the TMD. NRL’s slab waveguides capture the light from the dark excitons, providing a way to study them optically.

“2D materials have exotic optoelectronic properties that will be useful to the Navy,” said Lagasse. “A large challenge is interfacing these materials with existing platforms without damaging them – these boron nitride waveguides are a step towards that realization.”

NRL researchers used two special types of optical microscopes to characterize the hBN waveguides. One setup allows researchers to spectroscopically resolve photoluminescence emitting from different spots of the waveguide. The other setup let them observe the angular distribution of the emitted light.

NRL researchers also developed 3D electromagnetic models of the waveguides. The modeling results provide a toolkit for designing future 2D devices that use slab waveguides.

####

About U.S. Naval Research Laboratory
L is a scientific and engineering command dedicated to research that drives innovative advances for the U.S. Navy and Marine Corps from the seafloor to space and in the information domain. NRL is located in Washington, D.C. with major field sites in Stennis Space Center, Mississippi; Key West, Florida; Monterey, California, and employs approximately 3,000 civilian scientists, engineers and support personnel.

For more information, contact NRL Corporate Communications at (202) 480-3746 or .

For more information, please click here

Contacts:
Mary Hamisevicz
U.S. Naval Research Laboratory

Cell: (202) 480-3746
@USNRL

Copyright © U.S. Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

2 Dimensional Materials


First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024


$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation’s commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

News and information


First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024


Detecting breast cancer through a spit test February 16th, 2024


New chip opens door to AI computing at light speed February 16th, 2024


HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024


Under pressure – space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Graphene/ Graphite


First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024


$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation’s commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Laboratories


A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy


New chip opens door to AI computing at light speed February 16th, 2024


Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024


Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024


A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Possible Futures


First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024


Detecting breast cancer through a spit test February 16th, 2024


A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024


Under pressure – space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Chip Technology


New chip opens door to AI computing at light speed February 16th, 2024


HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024


Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024


‘Sudden death’ of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Optical computing/Photonic computing


New chip opens door to AI computing at light speed February 16th, 2024


HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024


Thermal impact of 3D stacking photonic and electronic chips: Researchers investigate how the thermal penalty of 3D integration can be minimized December 8th, 2023


Successful morphing of inorganic perovskites without damaging their functional properties October 6th, 2023

Discoveries


HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024


Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024


Superbug killer: New synthetic molecule highly effective against drug-resistant bacteria February 16th, 2024


Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Announcements


Detecting breast cancer through a spit test February 16th, 2024


New chip opens door to AI computing at light speed February 16th, 2024


HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024


Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024


Detecting breast cancer through a spit test February 16th, 2024


New chip opens door to AI computing at light speed February 16th, 2024


HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Military


New chip opens door to AI computing at light speed February 16th, 2024


‘Sudden death’ of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024


World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023


Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Photonics/Optics/Lasers


New chip opens door to AI computing at light speed February 16th, 2024


HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024


A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024


Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Leave a Reply

Your email address will not be published. Required fields are marked *