Home > Press > NYU Tandon researchers explore a more frictionless future: Elisa Riedos and her lab teams discovery of a fundamental law of friction leads to new materials that can minimize energy loss
Measuring atomic shear: in this rendering, a nano-scale tip pulls atoms so they slide on top of others.
CREDIT Martin Rejhon |
Abstract:
Professor of Chemical and Biomolecular Engineering Elisa Riedo and her team have discovered a fundamental friction law that is leading to a deeper understanding of energy dissipation in friction and the design of two-dimensional materials capable of minimizing energy loss.
NYU Tandon researchers explore a more frictionless future: Elisa Riedos and her lab teams discovery of a fundamental law of friction leads to new materials that can minimize energy loss
Brooklyn ,New York | Posted on November 4th, 2022
Friction is an everyday phenomenon; it allows drivers to stop their cars by breaking and dancers to execute complicated moves on various floor surfaces. It can, however, also be an unwanted effect that drives the waste of large amounts of energy in industrial processes, the transportation sector, and elsewhere. Tribologiststhose who study the science of interacting surfaces in relative motionhave estimated that one-quarter of global energy losses are due to friction and wear.
While friction is extremely widespread and relevant in technology, the fundamental laws of friction are still obscure, and only recently have scientists been able to use advances in nanotechnology to understand, for example, the microscopic origin of da Vincis law, which holds that frictional forces are proportional to the applied load.
Now, Riedo and her NYU Tandon postdoctoral researcher Martin Rejhon have found a new method to measure the interfacial shear between two atomic layers and discovered that this quantity is inversely related to friction, following a new law.
This workconducted in collaboration with NYU Tandon graduate student Francesco Lavini, and colleagues from the International School for Advanced Studies, the International Center for Theoretical Physics in Trieste Italy, as well as Pragues Charles Universitycould lead to more efficient manufacturing processes, greener vehicles, and a generally more sustainable world.
The interaction between a single atomic layer of a material and its substrate governs its electronic, mechanical, and chemical properties, Riedo explains, so gaining insight into that topic is important, on both fundamental and technological levels, in finding ways to reduce the energy loss caused by friction.
The researchers studied bulk graphite and epitaxial graphene films grown with different stacking orders and twisting, measuring the hard-to-access interfacial transverse shear modulus of an atomic layer on a substrate. They discovered that the modulus (a measure of the materials ability to resist shear deformations and remain rigid) is largely controlled by the stacking order and the atomic layer-substrate interaction and demonstrated its importance in controlling and predicting sliding friction in supported two-dimensional materials. Their experiments showed a general reciprocal relationship between friction force per unit contact area and interfacial shear modulus for all the graphite structures they investigated.
Their 2022 paper, “Relation between interfacial shear and friction force in 2D materials” was published online in Nature Nanotechnology and was funded by the U.S. Department of Energy Office of Science and the U.S. Army Research Office.
Our results can be generalized to other 2D materials as well, Riedo, who heads NYU Tandons PicoForce Lab, asserts. This presents a way to control atomic sliding friction and other interfacial phenomena, and has potential applications in miniaturized moving devices, the transportation industry, and other realms.
Elisas work is a great example of NYU Tandons commitment to a more sustainable future, Dean Jelena Kovačević says, and a testament to the research being done at our newly launched Sustainable Engineering Initiative, which focuses on tackling climate change and environmental contamination through a four-pronged approach were calling AMRAd, for Avoidance, Mitigation, Remediation and Adaptation.
####
About NYU Tandon School of Engineering
The NYU Tandon School of Engineering dates to 1854, the founding date for both the New York University School of Civil Engineering and Architecture and the Brooklyn Collegiate and Polytechnic Institute. A January 2014 merger created a comprehensive school of education and research in engineering and applied sciences as part of a global university, with close connections to engineering programs at NYU Abu Dhabi and NYU Shanghai. NYU Tandon is rooted in a vibrant tradition of entrepreneurship, intellectual curiosity, and innovative solutions to humanitys most pressing global challenges. Research at Tandon focuses on vital intersections between communications/IT, cybersecurity, and data science/AI/robotics systems and tools and critical areas of society that they influence, including emerging media, health, sustainability, and urban living. We believe diversity is integral to excellence, and are creating a vibrant, inclusive, and equitable environment for all of our students, faculty and staff. For more information, visit engineering.nyu.edu.
For more information, please click here
Contacts:
Sayar Lonial
NYU Tandon School of Engineering
Copyright © NYU Tandon School of Engineering
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
2 Dimensional Materials
Plant fibers for sustainable devices: Research into thermal properties of cellulose nanofibers yields surprising results November 4th, 2022
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Spin photonics to move forward with new anapole probe November 4th, 2022
News and information
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022
Spin photonics to move forward with new anapole probe November 4th, 2022
Possible Futures
Plant fibers for sustainable devices: Research into thermal properties of cellulose nanofibers yields surprising results November 4th, 2022
Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022
Discoveries
Spin photonics to move forward with new anapole probe November 4th, 2022
Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022
Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022
Advances in thermoelectric power generation possible with various metal chalcogenide materials, recent review shows November 4th, 2022
Announcements
Spin photonics to move forward with new anapole probe November 4th, 2022
Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022
Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022
Advances in thermoelectric power generation possible with various metal chalcogenide materials, recent review shows November 4th, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spin photonics to move forward with new anapole probe November 4th, 2022
Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022
Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022
Advances in thermoelectric power generation possible with various metal chalcogenide materials, recent review shows November 4th, 2022
Automotive/Transportation
The battery that runs 630 km on a single charge October 7th, 2022