Nanotechnology Now – Press Release: Photon-controlled diode: an optoelectronic device with a new signal processing behavior


Home > Press > Photon-controlled diode: an optoelectronic device with a new signal processing behavior

a. Schematic of a photon-controlled diode fabricated by sandwiching a h-BN layer between a n/n− MoS2 junction and a SiO2/p+-Si back-gate, using bottom/top graphene as cathode/anode and a top h-BN as protecting mask. b. Optical photograph of the fabricated array using photon-controlled diode as a unit. (scale bar: 10 μm).
CREDIT
©Science China Press
a. Schematic of a photon-controlled diode fabricated by sandwiching a h-BN layer between a n/n− MoS2 junction and a SiO2/p+-Si back-gate, using bottom/top graphene as cathode/anode and a top h-BN as protecting mask. b. Optical photograph of the fabricated array using photon-controlled diode as a unit. (scale bar: 10 μm).
CREDIT
©Science China Press

Abstract:
A photodetector is a kind of optoelectronic device that can detect optical signals and convert them into electrical signals, which includes photodiodes, phototransistors and photoconductors, et al. Although there are many types of photodetectors with different mechanisms and structures, depending on their electrical output characteristics before and after illumination, the representative behavior can be summarized as a limited number: the output current of a photodiode changes from rectified to fully-on state after illumination, while the output current of a photoconductor or a phototransistor changes from fully-off to fully-on state. From the perspective of the signal change behavior, there should be a new device that changes the output current from fully-off to rectified state, and may play a key role in future optoelectronic systems, such as optical logic, high-precision imaging and information processing. For instance, rectification controlled by light can avoid the crosstalk issue of photodetector arrays without using selectors, thereby helping to further improve the integration of the array.

Photon-controlled diode: an optoelectronic device with a new signal processing behavior


Beijing, China | Posted on July 1st, 2022

Recently, in a paper published in National Science Review, Dong-Ming Sun Group of the Institute of Metal Research, Chinese Academy of Sciences proposes a new device named photon-controlled diode which can change the output current from a fully-off state to a rectified state after illumination for the first time, leading to an anti-crosstalk photomemory array without using any selectors.

Scientists use lateral n/n− molybdenum disulfide (MoS2) junction as a channel, graphene as contact electrodes and hexagonal boron nitride (h-BN) as a photogating layer material to fabricate the photon-controlled diode, which is essentially a n/n− MoS2 junction inserted between two graphene/MoS2 Schottky junctions at the cathode and the anode. Controlled by light, the Schottky junctions suppress or permit the rectification behavior of the n/n− junction, so that the output current of the photon-controlled diode can change from fully-off to rectified state. The light-to-dark rectification ratio can be as high as more than 106. As a photodetector, its responsivity exceeds 105 A/W, while by increasing the thickness of the photogating layer, the behavior of the device changes to a multifunctional photomemory with the highest nonvolatile responsivity of 4.8×107 A/W and the longest retention time of 6.5 × 106 s reported so far. Using the photon-controlled diodes as pixel units, a 3×3 photomemory array is fabricated without using any selectors, showing no crosstalk as well as functions of wavelength and power density selectivity. This work paves the way for the development of future high-integration, low-power and intelligent optoelectronic systems.

This research received funding from the National Natural Science Foundation of China.

####

For more information, please click here

Contacts:
Bei Yan
Science China Press

Office: 86-10-64015905

Expert Contact

Dong-Ming Sun
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences.

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

A photon-controlled diode with a new signal processing behavior:

News and information


Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022


Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022


Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Possible Futures


Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022


Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022


An artificial intelligence probe help see tumor malignancy July 1st, 2022


New protocol for assessing the safety of nanomaterials July 1st, 2022

Chip Technology


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022


Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022


Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022


Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Optical computing/Photonic computing


Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022


Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022


Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Discoveries


Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022


Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022


Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Announcements


Two opposing approaches could give lithium-sulfur batteries a leg up over lithium-ion July 1st, 2022


Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022


Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Technologies boost potential for carbon dioxide conversion to useful products: Researchers explore use metal-organic frameworks based catalysts for hydrogenation of carbon dioxide July 1st, 2022


Sieving carbons: Ideal anodes for high-energy sodium-ion batteries July 1st, 2022


An artificial intelligence probe help see tumor malignancy July 1st, 2022


New protocol for assessing the safety of nanomaterials July 1st, 2022

Photonics/Optics/Lasers


Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022


Photonic synapses with low power consumption and high sensitivity are expected to integrate sensing-memory-preprocessing capabilities July 1st, 2022


Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022


Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *