Home > Press > Researchers realize ultra-high precision search for exotic interactions
Abstract:
The standard model is currently recognized as the most successful theory for studying particles and their interactions. However, it still fails to account for some important astronomy observations, such as the existence of dark matter and dark energy. Physicists generally believe that there are new particles beyond the standard model, which transmit new interactions between standard model particles. Due to the weak effect of exotic interaction, searching for exotic interactions is extremely challenging, and it is urgent to explore new methods to improve the experimental sensitivity.
Researchers realize ultra-high precision search for exotic interactions
Hefei, China | Posted on December 3rd, 2021
In a study published in Science Advances, the research team led by Prof. PENG Xinhua from University of Science and Technology of China of the Chinese Academy of Sciences, collaborating with Prof. Dmitry Budker from Helmholtz Institution, realized ultra-high precision search of exotic spin- and velocity- dependent interactions beyond the standard model, and amplified the magnetic field signal of exotic interactions at least two orders of magnitude and applied the technique to the investigation of exotic velocity-interactions based on their newly developed quantum spin-based amplifier.
In this study, researchers rotated a high-density Bi4Ge3O12 (BGO) crystal at high speed to induce the interaction between the BGO crystal and the xenon nucleus in the spin-based amplifier. This exotic interaction is equivalent to generating an alternating oscillating magnetic field on the nucleus, so the measurement of the exotic interaction can be converted into a magnetic field detection. The quantum spin-based amplifier can amplify the magnetic field to be measured at ultra-low noise levels, which greatly improved the sensitivity of the exotic interaction search.
Given the possible interference of technical noise, researchers took advantage of the velocity dependence of the exotic interaction to effectively eliminate the interference signals such as vibration and classical magnetic field.
They found no evidence of the existence of new particles in the search area, and thus proposed a new class of bosons-nucleus coupling constraint, which was at least two orders of magnitude bigger than that of the previous international optimal constraint.
This study demonstrated the unique advantages of the spin-based amplifier to study new physics theories beyond the standard model.
####
For more information, please click here
Contacts:
Jane fan
University of Science and Technology of China
Copyright © University of Science and Technology of China (USTC)
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
Optimized method to detect high-dimensional entanglement December 3rd, 2021
Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021
Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021
Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021
Magnetism/Magnons
Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021
Physics
Scientists discover spin polarization induced by shear flow October 1st, 2021
Switching on a superfluid: Exotic phase transitions unlock pathways to future, superfluid-based technologies September 24th, 2021
Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021
Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021
Possible Futures
Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021
Optimized method to detect high-dimensional entanglement December 3rd, 2021
Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021
Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021
Discoveries
Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021
Optimized method to detect high-dimensional entanglement December 3rd, 2021
Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021
Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021
Announcements
Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021
Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021
Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021
Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021