Nanotechnology Now – Press Release: Researchers reveal multi-path mechanism in electrochemical CO2 reduction


Home > Press > Researchers reveal multi-path mechanism in electrochemical CO2 reduction

Researchers reveal multi-path mechanism in electrochemical CO2 reduction

CREDIT
DICP
Researchers reveal multi-path mechanism in electrochemical CO2 reduction

CREDIT
DICP

Abstract:
A research group led by Prof. XIAO Jianping from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) and their collaborators synthesized a single-atom Pb-alloyed Cu catalyst (Pb1Cu), which showed high activity for the electrochemical CO2 reduction reaction (CO2RR) with a selectivity of 96% to formate and stability of up to 180 h at 100 mA cm-2.

Researchers reveal multi-path mechanism in electrochemical CO2 reduction


Dalian, China | Posted on September 17th, 2021

This study was published in Nature Nanotechnology on Sept. 16.

The researchers reported multi-path for CO2 reduction to formate, namely the reaction paths through COOH* and HCOO* intermediates. The reaction phase diagram was built based on the “energy global optimization” approach, describing the activity trend for CO2RR to formate. A double-peak activity trend was obtained owing to the consideration of multi-path.

They found that Cu preferred the COOH* path, resulting in the production of hydrocarbons and oxygenates, which exhibit limited selectivity and activity toward a specific product. However, Pb1Cu preferred the HCOO* path. The optimal HCOO* binding energy in Pb1Cu revealed either high activity or selectivity to formate via CO2RR. The agreement between experimental and theoretical activity trend confirms the reliability of multi-path mechanism.

The Cu site on the Pb1Cu step surface, rather than the single-atom Pb site, showed the highest CO2RR activity toward exclusive formate production. The free-energy diagram with the calculated electrochemical barriers also confirms the formate selectivity.

“The ‘double-peak’ describes a more accurate activity trend for CO2RR, providing a significant insight for catalyst design,” said Prof. XIAO.

####

For more information, please click here

Contacts:
Jean Wang
Dalian Institute of Chemical Physics, Chinese Academy Sciences

Office: 41182464221

Copyright © Dalian Institute of Chemical Physics, Chinese Academy Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone’s Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Chemistry

Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies September 3rd, 2021

Harnessing sunlight to fuel the future through covalent organic frameworks: Scientists underscore the potential of a new class of materials to convert sunlight to fuel August 13th, 2021

HKUST scientists discover new mechanisms of activity improvement on bimetallic catalysts for hydrogen generation and fuel cells August 13th, 2021

One-dimensional red phosphorous glows in unexpected ways: New study published in Nature Communications is the first to show strong optical properties in a 1D van der Waal material August 13th, 2021

Possible Futures

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone’s Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Discoveries

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone’s Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Announcements

The National Space Society Mourns the Passing of Robert Krone, Founder of the Kepler Space Institute: Krone’s Visionary and Humanistic Approach to the Study of Space Communities and Settlement Was Unique September 22nd, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Gamechanger for clean hydrogen production, Curtin research finds: Curtin University research has identified a new, cheaper and more efficient electrocatalyst to make green hydrogen from water that could one day open new avenues for large-scale clean energy production September 17th, 2021

Environment

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies September 3rd, 2021

Light-harvesting nanoparticle catalysts show promise in quest for renewable carbon-based fuels June 25th, 2021

Active platinum species: Catalytic high-temperature oxidations: Individual atom or metal cluster? June 16th, 2021

Leave a Reply

Your email address will not be published. Required fields are marked *