Nanotechnology Now – Press Release: Researchers succeed in controlling quantum states in a new energy range


Home > Press > Researchers succeed in controlling quantum states in a new energy range

Aerial photo of the research center - courtesy of Elettra Sincrotrone Trieste

Credit
Elettra Sincrotrone Trieste
Aerial photo of the research center – courtesy of Elettra Sincrotrone Trieste

Credit
Elettra Sincrotrone Trieste

Abstract:
An international team of scientists headed by Dr. Lukas Bruder, junior research group leader at the Institute of Physics, University of Freiburg, has succeeded in producing and directly controlling hybrid electron-photon quantum states in helium atoms. To this end, they generated specially prepared, highly intense extreme ultraviolet light pulses using the FERMI free electron laser in Trieste, Italy. The researchers achieved control of the hybrid quantum states using a new laser pulse-shaping technique. Their results have been published in the journal Nature.

Researchers succeed in controlling quantum states in a new energy range


Freiburg, Germany | Posted on December 13th, 2024

Strong light fields can create new quantum states

As long as electrons are bound to an atom, their energy can only be of certain values. These energy values depend primarily on the atoms themselves. However, if an atom is in the beam of a very intense laser, the energy levels shift. Hybrid electron-photon states are created, known as ‘dressed states’. These occur at laser intensities in the range of ten to a hundred trillion watts per square centimetre. In order to be able to produce and control these special quantum states, laser pulses are necessary that achieve such intensities within a short time window of only a few trillionths of a second.

Free electron laser for producing laser radiation in the extreme ultraviolet range

For their experiment, the scientists used the FERMI free electron laser which allows generation of laser light in the extreme ultraviolet spectral range at very high intensity. This extreme ultraviolet radiation has a wavelength of less than 100 nanometres, which is necessary to manipulate the electron states in helium atoms.

In order to control the electron-photon states, the researchers used laser pulses that dispersed or contracted depending on the scenario. To this end, they adjusted the time lag of the different colour components of the laser radiation. The properties of the laser pulses were controlled using a ‘seed laser pulse’, which preconditioned the emission of the free electron laser.

“Our research enabled us for the first time to directly control these transient quantum states in a helium atom,” says Bruder. “The technique we’ve developed opens up a new field of research: this includes new opportunities for making experiments with free electron lasers more efficient and selective or for gaining new insights into fundamental quantum systems, which are not accessible with visible light. In particular it may now be possible to develop methods to study or even control chemical reactions with atomic precision.”

Original publication: Richter et al., Strong-field quantum control in the extreme ultraviolet using pulse shaping. Nature, 2024. DOI.org/10.1038/s41586-024-08209-y
The authors Fabian Richter, Sarang Dev Ganeshamandiram, Nicolai Gölz, Dr. Sebastian Hartweg, Prof. Dr. Bernd von Issendorff, Friedemann Landmesser, Yilin Li, Moritz Michelbach, Arne Morlok, Aaron Ngai, Prof. Dr. Giuseppe Sansone, Prof. Dr. Frank Stienkemeier, Daniel Uhl, Brendan Wouterlood and Dr. Lukas Bruder research at the Institute of Physics at the University of Freiburg. Likewise involved in the publication were researchers from the Max Planck Institute for Physics of Complex Systems in Dresden, the University of Oldenburg, the IFN-CNR in Milan, the University of Innsbruck, the University of Gothenburg, the CNR-IOM Trieste, the Istituto Nazionale die Fisica Nucleare in Rome, the Deutsches Elektronen-Synchrotron DESY in Hamburg, the Hamburg Centre für Ultrafast Imaging, the University of Aarhus and the University of Hamburg.
The research was funded by among others the Federal Ministry of Education and Research (BMBF) LoKo-FEL (05K16VFB) and STAR (05K19VF3), the European Research Council (ERC) Starting Grant MULTIPLEX (101078689), the German Research Foundation (DFG) RTG 2717, Grant 429805582 (project SA 3470/4-1) and project STI 125/24-1 and the Baden-Württemberg Foundation’s elite program for postdocs.

####

For more information, please click here

Contacts:
Rimma Gerenstein
University of Freiburg

Copyright © University of Freiburg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Paper:

News and information


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024


FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024


Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024


Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Quantum Physics


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Govt.-Legislation/Regulation/Funding/Policy


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024


FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024


Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024


New discovery aims to improve the design of microelectronic devices September 13th, 2024

Possible Futures


Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024


FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024


Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024


Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Discoveries


How cells repair DNA’s protective barrier: a pathway to address a rare genetic disorder characterized by rapid aging in children December 13th, 2024


Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024


Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

Announcements


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024


FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024


Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024


Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Breakthrough brings body-heat powered wearable devices closer to reality December 13th, 2024


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024


FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024


Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Photonics/Optics/Lasers


Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024


Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024


UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024


Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Quantum nanoscience


Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024


Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024


Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024


Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Leave a Reply

Your email address will not be published. Required fields are marked *