Home > Press > Resolving the puzzles of graphene superconductivity: Physicists publish a theoretical framework to explain the recent discovery of superconductivity in trilayer graphene
Experimental data from trilayer graphene (bottom) shows two circular Fermi surfaces, creating a ring-like shape, in which the occupied electronic states lie (top). In unconventional superconductivity, the electrons are assumed to be glued together by an interaction, not to be confused with their usual interaction of electrical repulsion.
CREDIT IST Austria |
Abstract:
A single layer of carbon atoms arranged in a honeycomb lattice makes up the promising nanomaterial called graphene. Research on a setup of three sheets of graphene stacked on top of one another so that their lattices are aligned but shifted forming rhombohedral trilayer graphene revealed an unexpected state of superconductivity. In this state electrical resistance vanishes due to the quantum nature of the electrons. The discovery was published and debated in Nature, whilst the origins remained elusive. Now, Professor Maksym Serbyn and Postdoc Areg Ghazaryan from the Institute of Science and Technology (IST) Austria in collaboration with Professor Erez Berg and Postdoc Tobias Holder from the Weizmann Institute of Science, Israel, developed a theoretical framework of unconventional superconductivity, which resolves the puzzles posed by the experimental data.
Resolving the puzzles of graphene superconductivity: Physicists publish a theoretical framework to explain the recent discovery of superconductivity in trilayer graphene
Vienna, Austria | Posted on December 10th, 2021
The Puzzles and their Resolution
Superconductivity relies on the pairing of free electrons in the material despite their repulsion arising from their equal negative charges. This pairing happens between electrons of opposite spin through vibrations of the crystal lattice. Spin is a quantum property of particles comparable, but not identical to rotation. The mentioned kind of pairing is the case at least in conventional superconductors. Applied to trilayer graphene, co-lead-author Ghazaryan points out, we identified two puzzles that seem difficult to reconcile with conventional superconductivity.
First, above a threshold temperature of roughly -260 °C electrical resistance should rise in equal steps with increasing temperature. However, in the experiments it remained constant up to -250 °C. Second, pairing between electrons of opposite spin implies a coupling that contradicts another experimentally observed feature, namely the presence of a nearby configuration with fully aligned spins, which we know as magnetism. In the paper, we show that both observations are explainable, group leader Maksym Serbyn summarizes, if one assumes that an interaction between electrons provides the glue that holds electrons together. This leads to unconventional superconductivity.
When one draws all possible states, which electrons can have, on a certain chart and then separates the occupied ones from the unoccupied ones with a line, this separation line is called a Fermi surface. Experimental data from graphene shows two Fermi surfaces, creating a ring-like shape. In their work, the researchers draw from a theory from Kohn and Luttinger from the 1960s and demonstrate that such circular Fermi surfaces favor a mechanism for superconductivity based only on electron interactions. They also suggest experimental setups to test their argument and offer routes towards raising the critical temperature, where superconductivity starts appearing.
The Benefits of Graphene Superconductivity
While superconductivity has been observed in other trilayer and bilayer graphene, these known materials must be specifically engineered and may be hard to control because of their low stability. Rhombohedral trilayer graphene, although rare, is naturally occurring. The proposed theoretical solution has the potential of shedding light on long-standing problems in condensed matter physics and opening the way to potential applications of both superconductivity and graphene.
Funding information:
The IST Austria project part was supported by funding from the European Union Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 754411. Erez Berg and Tobias Holder were supported by the European Research Council (ERC) under Grant Agreement No. 817799.
####
About Institute of Science and Technology Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promoting their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas. www.ist.ac.at
For more information, please click here
Contacts:
Markus Feigl
Institute of Science and Technology Austria
Cell: 664 / 88 32 6393
Copyright © Institute of Science and Technology Austria
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
Development of a high-energy-resolution, LaB6 nanowire-based field emission gun: Electron source enables atomic resolution TEM observation December 10th, 2021
DeepMind simulates matter on the nanoscale with AI December 10th, 2021
Graphene/ Graphite
Graphene nanotubes offer an efficient replacement for carbon additives in conductive electrical heating paints November 3rd, 2021
Graphene nanotubes provide a shortcut to add conductivity to powder coatings October 1st, 2021
Superconductivity
A new dimension in magnetism and superconductivity launched November 5th, 2021
Possible Futures
Development of a high-energy-resolution, LaB6 nanowire-based field emission gun: Electron source enables atomic resolution TEM observation December 10th, 2021
DeepMind simulates matter on the nanoscale with AI December 10th, 2021
PASQAL announces quantum computing collaboration with NVIDIA December 10th, 2021
Discoveries
Development of a high-energy-resolution, LaB6 nanowire-based field emission gun: Electron source enables atomic resolution TEM observation December 10th, 2021
DeepMind simulates matter on the nanoscale with AI December 10th, 2021
PASQAL announces quantum computing collaboration with NVIDIA December 10th, 2021
Announcements
Development of a high-energy-resolution, LaB6 nanowire-based field emission gun: Electron source enables atomic resolution TEM observation December 10th, 2021
DeepMind simulates matter on the nanoscale with AI December 10th, 2021
PASQAL announces quantum computing collaboration with NVIDIA December 10th, 2021
Innovative silicon nanochip can reprogram biological tissue in living body December 10th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
DeepMind simulates matter on the nanoscale with AI December 10th, 2021
Innovative silicon nanochip can reprogram biological tissue in living body December 10th, 2021
A new mechanism for generation of vesicles that transport molecules and vaccine nanoparticles into living cells December 10th, 2021