Nanotechnology Now – Press Release: Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify


Home > Press > Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify

Solar cells elements developed by researchers

CREDIT
UrFU / Rodion Narudinov
Solar cells elements developed by researchers

CREDIT
UrFU / Rodion Narudinov

Abstract:
A new type of material for one of the solar cells was proposed by specialists of the Ural Federal University (UrFU) and the Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences together with their colleagues. The compounds found will significantly reduce the cost of solar cell production. The article was published in the New Journal of Chemistry.

Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify


Ekaterinburg, Russia | Posted on October 28th, 2022

Perovskite solar cells (PSCs) are a promising alternative to the familiar silicon cells, providing the same amount of energy with 180 times less material thickness. Their production technology is much simpler and cheaper than that of silicon cells. The problem with PSCs is its lack of stability. One of the most effective solutions today, the specialists explained, is the selection of new materials that ensure the transport of charge carriers after it is obtained in the perovskite layer itself.

Scientists from the UrFU and the UB RAS have proposed a new type of material for transporting electrons in PSCs, which has a number of advantages. According to the authors, with the new material they were able to achieve solar energy conversion efficiency of 12%, which is comparable with the average performance of market counterparts.

“The family of molecules we found carries electrons in PSCs slightly worse than the fullerenes used today, but they are about twice as cheap, much easier to produce, and have a number of other technological advantages,” says Gennady Rusinov, associate professor at the Department of Organic Synthesis Technology of UrFU.

Although fullerenes, according to scientists, are the most sought-after electron-transport material for PSCs, they have problems with morphological stability and low light absorption, as well as great difficulty in modifying electronic properties. The costs of synthesis and purification of fullerenes in some cases make their application economically inefficient.

“Our molecules are devoid of the main drawbacks of fullerenes, and their synthesis is very simple, even in large quantities. The optical, electrochemical and electronic properties of our molecules are easily modified. In addition, they are dipoles, which opens up a number of possibilities for improving PSCs,” said Gennady Rusinov.

Researchers from the Ural Federal University and the Institute of Cosmophysical Research of the Ural Branch of the Russian Academy of Sciences proposed a complete synthesis technique for the new molecules and also studied their thermal stability, electronic and optical properties.

It should be noted that the research was carried out jointly with scientists from IMET UB RAS, IPC RAS, and NITU “MISIS”. In the future, the research team intends to continue searching for new materials for solar cells.

####

For more information, please click here

Contacts:
Anna Marinovich
Ural Federal University

Office: 343-389-94-07
Cell: 961-770-6024

Copyright © Ural Federal University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

ARTICLE TITLE

News and information


“Kagome” metallic crystal adds new spin to electronics October 28th, 2022


Improving the efficiency of nanogenerators that harvest static electricity October 28th, 2022


New era of two-dimensional ferroelectrics: Reviewing layered van-der-Waals ferroelectrics for future nanoelectronics October 28th, 2022


Advanced Materials and NanoSystems: Theory and Experiment-Part 1 & 2 October 28th, 2022

Perovskites


Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022


Lattice distortion of perovskite quantum dots induces coherent quantum beating September 9th, 2022


Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022


Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Organic Electronics


University of Houston research allows for 3D printing of ‘organic electronics’ Micro-scale organic electronics for use in bioelectronics via multiphoton 3D printers June 24th, 2022


Flexing the power of a conductive polymer: A new material holds promise for the next generation of organic electronics June 24th, 2022


‘Fruitcake’ structure observed in organic polymers June 3rd, 2022


The future of data storage is double-helical, research indicates: The Information Age needs a new data storage powerhouse. With an expanded molecular alphabet and a 21st century twist, DNA may just fit the bill. March 4th, 2022

Possible Futures


Building with nanoparticles, from the bottom up: Researchers develop a technique for precisely arranging nanoscale particles on a surface, such as a silicon chip, that doesn’t damage the material October 28th, 2022


New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022


New era of two-dimensional ferroelectrics: Reviewing layered van-der-Waals ferroelectrics for future nanoelectronics October 28th, 2022


Advanced Materials and NanoSystems: Theory and Experiment-Part 1 & 2 October 28th, 2022

Discoveries


Advanced nanoparticles provide new weapon to fight difficult cancers: Researchers use nanoparticles to deliver a bacterially derived compound that targets the STING pathway to suppress tumor growth and metastasis by disrupting blood vessels and stimulating immune response October 28th, 2022


“Kagome” metallic crystal adds new spin to electronics October 28th, 2022


Improving the efficiency of nanogenerators that harvest static electricity October 28th, 2022


New era of two-dimensional ferroelectrics: Reviewing layered van-der-Waals ferroelectrics for future nanoelectronics October 28th, 2022

Announcements


“Kagome” metallic crystal adds new spin to electronics October 28th, 2022


Improving the efficiency of nanogenerators that harvest static electricity October 28th, 2022


New era of two-dimensional ferroelectrics: Reviewing layered van-der-Waals ferroelectrics for future nanoelectronics October 28th, 2022


Advanced Materials and NanoSystems: Theory and Experiment-Part 1 & 2 October 28th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Improving the efficiency of nanogenerators that harvest static electricity October 28th, 2022


New era of two-dimensional ferroelectrics: Reviewing layered van-der-Waals ferroelectrics for future nanoelectronics October 28th, 2022


Advanced Materials and NanoSystems: Theory and Experiment-Part 1 & 2 October 28th, 2022


Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

Environment


New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022


Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022


Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications October 14th, 2022


Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Energy


Improving the efficiency of nanogenerators that harvest static electricity October 28th, 2022


Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022


Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications October 14th, 2022


Exquisitely thin membranes can slash energy spent refining crude oil into fuel and plastic: Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil September 30th, 2022

Solar/Photovoltaic


Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022


Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022


Building blocks of the future for photovoltaics: Research team led by Göttingen University observes formation of “dark” moiré interlayer excitons for the first time August 19th, 2022


At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *