Nanotechnology Now – Press Release: Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution


Home > Press > Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution

The comparison of the paramagnetic resonance spectrum between the traditional method (top) and the new method (bottom) of noise-insensitive. It clearly shows that the spectral resolution has been significantly improved, and more precise coupling information has been observed.

CREDIT
DU Jiangfeng et al.
The comparison of the paramagnetic resonance spectrum between the traditional method (top) and the new method (bottom) of noise-insensitive. It clearly shows that the spectral resolution has been significantly improved, and more precise coupling information has been observed.

CREDIT
DU Jiangfeng et al.

Abstract:
A high-resolution paramagnetic resonance detection method based on the diamond nitrogen-vacancy (NV) color center quantum sensor was proposed and experimentally implemented in a study led by academician DU Jiangfeng from CAS Key Laboratory of Microscale Magnetic Resonance of University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS).

Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution


Hefei, P.R.China | Posted on June 19th, 2020

The researchers obtained the single-spin paramagnetic resonance spectrum with kilohertz (kHz) spectral resolution. The study was published in Science Advances.

A major development trend of electron paramagnetic resonance spectroscopy is to get as accurate information as possible from as few samples as possible, which requires enhancing both spatial resolution and spectral resolution. In recent decades, the spatial resolution has been improved considerably, and the detection of single-spin paramagnetic resonance even reached to the nanoscale due to the emergence of new detection technology. However, the spectral resolution remains in the megahertz (MHz) scale because of uncontrollable external noise. Therefore, a new method has to be found in order to break through the current limitation of spectral resolution caused by noise.

One more direct and effective way is to make the measured spin naturally insensitive to external noise. A certain kind of spin states can resist the disturbance of external magnetic field noise, and the spectral lines generated by electron when transiting between these spin states will be narrowed. It has been reported that this phenomenon also exists for a kind of paramagnetic material under zero magnetic field in previous research. However, the detection sensitivity of traditional paramagnetic resonance technology is related to the magnitude of magnetic field, and the detection efficiency in zero field is extremely low, which limits the practical application.

Therefore, the researchers used NV color center quantum sensor in diamond to detect paramagnetic resonance. Previous work has proved that the NV color center still has single-spin level detection sensitivity even at zero field.

In order to observe the narrowing of the spectral lines and realize high-resolution spectroscopy detection, it is also necessary to eliminate the broadening of the spectral line caused by the NV sensor itself. Inspired by the correlation detection in nuclear magnetic resonance (NMR), DU’s team designed a paramagnetic resonance correlation sequence suitable for zero field, which greatly suppressed the intrinsic broadening of NV sensors.

Using this new method, they successfully detected the narrowing transition of the electron spin of a single nitrogen atom in diamond in their experiment. Compared with the traditional method, the spectral resolution has been improved considerably by 27 times, reaching 8.6 kHz.

This experimental results showed that the paramagnetic resonance technology based on NV quantum sensor can achieve both high spatial and high spectral resolution. At the same time, this method is not limited by harsh environmental conditions (such as vacuum or low temperature), which is very competitive in biological applications. More detailed information of structural, dynamic changes and local environmental characteristics of a single molecule can be analyzed.

####

For more information, please click here

Contacts:
Jane FAN Qiong

86-551-636-07280

Copyright © University of Science and Technology of China (USTC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

RELATED JOURNAL ARTICLE:

News and information

A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

EU Team Demonstrates Full Data-Transfer Silicon Photonics Module Delivering 100 Gb/s and Develops Building Blocks for Tb/s: COSMICC Project Breakthroughs ‘Will Answer Tremendous Market Needs with a Target Cost per Bit that Traditional Wavelength-Division Multiplexing Transceivers June 23rd, 2020

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Polymers can fine-tune attractions between suspended nanocubes: Interactions between hollow silica nanocubes suspended in a solution can be adjusted by varying the concentration of polymer molecules added to the mixture. June 19th, 2020

Imaging

Oxford Instruments Asylum Research Jupiter XR Large-Sample AFM Now Includes New Ergo Software Interface for Even Greater Productivity June 18th, 2020

Oxford Instruments Asylum Research Announces New “Relate” Software for Correlative Imaging with Atomic Force Microscopy and Electron Microscopy June 12th, 2020

New tool helps nanorods stand out: Rice team’s SEMseg method makes nanoparticle analysis quicker and more affordable June 8th, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Possible Futures

A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

EU Team Demonstrates Full Data-Transfer Silicon Photonics Module Delivering 100 Gb/s and Develops Building Blocks for Tb/s: COSMICC Project Breakthroughs ‘Will Answer Tremendous Market Needs with a Target Cost per Bit that Traditional Wavelength-Division Multiplexing Transceivers June 23rd, 2020

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Sensors

Polymers can fine-tune attractions between suspended nanocubes: Interactions between hollow silica nanocubes suspended in a solution can be adjusted by varying the concentration of polymer molecules added to the mixture. June 19th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Making quantum ‘waves’ in ultrathin materials: Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale May 15th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of ‘twistronics’ based on tunable 2D materials May 12th, 2020

Discoveries

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Teaching physics to neural networks removes ‘chaos blindness’ June 19th, 2020

Is teleportation possible? Yes, in the quantum world: Quantum teleportation is an important step in improving quantum computing June 19th, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Announcements

A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

EU Team Demonstrates Full Data-Transfer Silicon Photonics Module Delivering 100 Gb/s and Develops Building Blocks for Tb/s: COSMICC Project Breakthroughs ‘Will Answer Tremendous Market Needs with a Target Cost per Bit that Traditional Wavelength-Division Multiplexing Transceivers June 23rd, 2020

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Two quantum cheshire cats exchange grins June 19th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

Two quantum cheshire cats exchange grins June 19th, 2020

Leave a Reply

Your email address will not be published. Required fields are marked *