Home > Press > Stretching diamond for next-generation microelectronics
Stretching of microfabricated diamonds pave ways for applications in next-generation microelectronics.
CREDIT Dang Chaoqun / City University of Hong Kong |
Abstract:
Diamond is the hardest material in nature. But out of many expectations, it also has great potential as an excellent electronic material. A joint research team led by City University of Hong Kong (CityU) has demonstrated for the first time the large, uniform tensile elastic straining of microfabricated diamond arrays through the nanomechanical approach. Their findings have shown the potential of strained diamonds as prime candidates for advanced functional devices in microelectronics, photonics, and quantum information technologies.
Stretching diamond for next-generation microelectronics
Hong Kong, China | Posted on January 5th, 2021
The research was co-led by Dr Lu Yang, Associate Professor in the Department of Mechanical Engineering (MNE) at CityU and researchers from Massachusetts Institute of Technology (MIT) and Harbin Institute of Technology (HIT). Their findings have been recently published in the prestigious scientific journal Science, titled “Achieving large uniform tensile elasticity in microfabricated diamond”.
“This is the first time showing the extremely large, uniform elasticity of diamond by tensile experiments. Our findings demonstrate the possibility of developing electronic devices through ‘deep elastic strain engineering’ of microfabricated diamond structures,” said Dr Lu.
Diamond: “Mount Everest” of electronic materials
Well known for its hardness, industrial applications of diamonds are usually cutting, drilling, or grinding. But diamond is also considered as a high-performance electronic and photonic material due to its ultra-high thermal conductivity, exceptional electric charge carrier mobility, high breakdown strength and ultra-wide bandgap. Bandgap is a key property in semi-conductor, and wide bandgap allows operation of high-power or high-frequency devices. “That’s why diamond can be considered as ‘Mount Everest’ of electronic materials, possessing all these excellent properties,” Dr Lu said.
However, the large bandgap and tight crystal structure of diamond make it difficult to “dope”, a common way to modulate the semi-conductors’ electronic properties during production, hence hampering the diamond’s industrial application in electronic and optoelectronic devices. A potential alternative is by “strain engineering”, that is to apply very large lattice strain, to change the electronic band structure and associated functional properties. But it was considered as “impossible” for diamond due to its extremely high hardness.
Then in 2018, Dr Lu and his collaborators discovered that, surprisingly, nanoscale diamond can be elastically bent with unexpected large local strain. This discovery suggests the change of physical properties in diamond through elastic strain engineering can be possible. Based on this, the latest study showed how this phenomenon can be utilized for developing functional diamond devices.
Uniform tensile straining across the sample
The team firstly microfabricated single-crystalline diamond samples from a solid diamond single crystals. The samples were in bridge-like shape – about one micrometre long and 300 nanometres wide, with both ends wider for gripping (See image: Tensile straining of diamond bridges). The diamond bridges were then uniaxially stretched in a well-controlled manner within an electron microscope. Under cycles of continuous and controllable loading-unloading of quantitative tensile tests, the diamond bridges demonstrated a highly uniform, large elastic deformation of about 7.5% strain across the whole gauge section of the specimen, rather than deforming at a localized area in bending. And they recovered their original shape after unloading.
By further optimizing the sample geometry using the American Society for Testing and Materials (ASTM) standard, they achieved a maximum uniform tensile strain of up to 9.7%, which even surpassed the maximum local value in the 2018 study, and was close to the theoretical elastic limit of diamond. More importantly, to demonstrate the strained diamond device concept, the team also realized elastic straining of microfabricated diamond arrays.
Tuning the bandgap by elastic strains
The team then performed density functional theory (DFT) calculations to estimate the impact of elastic straining from 0 to 12% on the diamond’s electronic properties. The simulation results indicated that the bandgap of diamond generally decreased as the tensile strain increased, with the largest bandgap reduction rate down from about 5 eV to 3 eV at around 9% strain along a specific crystalline orientation. The team performed an electron energy-loss spectroscopy analysis on a pre-strained diamond sample and verified this bandgap decreasing trend.
Their calculation results also showed that, interestingly, the bandgap could change from indirect to direct with the tensile strains larger than 9% along another crystalline orientation. Direct bandgap in semi-conductor means an electron can directly emit a photon, allowing many optoelectronic applications with higher efficiency.
These findings are an early step in achieving deep elastic strain engineering of microfabricated diamonds. By nanomechanical approach, the team demonstrated that the diamond’s band structure can be changed, and more importantly, these changes can be continuous and reversible, allowing different applications, from micro/nanoelectromechanical systems (MEMS/NEMS), strain-engineered transistors, to novel optoelectronic and quantum technologies. “I believe a new era for diamond is ahead of us,” said Dr Lu.
###
Dr Lu, Dr Alice Hu, who is also from MNE at CityU, Professor Li Ju from MIT and Professor Zhu Jiaqi from HIT are the corresponding authors of the paper. The co-first authors are Dang Chaoqun, PhD graduate, and Dr Chou Jyh-Pin, former postdoctoral fellow from MNE at CityU, Dr Dai Bing from HIT, and Chou Chang-Ti from National Chiao Tung University. Dr Fan Rong and Lin Weitong from CityU are also part of the team. Other collaborating researchers are from the Lawrence Berkeley National Laboratory, University of California, Berkeley, and Southern University of Science and Technology.
The research at CityU was funded by the Hong Kong Research Grants Council and the National Natural Science Foundation of China.
####
For more information, please click here
Contacts:
P.K. Lee
852-344-28925
Copyright © City University of Hong Kong
If you have a comment, please Contact us.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
News and information
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021
High-speed atomic force microscopy visualizes cell protein factories January 8th, 2021
Microfluidics/Nanofluidics
Bionic idea boosts lithium-ion extraction January 1st, 2021
Jet-printing microfluidic devices on demand November 6th, 2020
Govt.-Legislation/Regulation/Funding/Policy
Nanoparticle vaccine for COVID-19 January 8th, 2021
Transition metal ‘cocktail’ helps make brand new superconductors: Concept of high entropy alloys provides a discovery platform for new superconductors January 8th, 2021
Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021
Spontaneous robot dances highlight a new kind of order in active matter January 1st, 2021
Possible Futures
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Nanoparticle vaccine for COVID-19 January 8th, 2021
Transition metal ‘cocktail’ helps make brand new superconductors: Concept of high entropy alloys provides a discovery platform for new superconductors January 8th, 2021
Single-dose COVID-19 vaccine triggers antibody response in mice January 8th, 2021
Chip Technology
Engineers find antioxidants improve nanoscale visualization of polymers January 8th, 2021
Microfabricated elastic diamonds improve material’s electronic properties January 1st, 2021
Quantum Computing
Microfabricated elastic diamonds improve material’s electronic properties January 1st, 2021
Stevens creates entangled photons 100 times more efficiently than previously possible: Ultra-bright photon source brings scalable quantum photonics within reach December 17th, 2020
In new step toward quantum tech, scientists synthesize ‘bright’ quantum bits: Innovative step by Northwestern, UChicago scientists could boost computing, sensing December 10th, 2020
Discoveries
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021
High-speed atomic force microscopy visualizes cell protein factories January 8th, 2021
Materials/Metamaterials
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Microfabricated elastic diamonds improve material’s electronic properties January 1st, 2021
Scientists suggested a method to improve performance of methanol fuel cells December 25th, 2020
New topological properties found in “old” material of Cobalt disulfide: For one thing, it’s not a true half-metal December 18th, 2020
Announcements
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021
High-speed atomic force microscopy visualizes cell protein factories January 8th, 2021
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Nanocrystals that eradicate bacteria biofilm January 8th, 2021
Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021
High-speed atomic force microscopy visualizes cell protein factories January 8th, 2021
Military
Spontaneous robot dances highlight a new kind of order in active matter January 1st, 2021
Flash graphene rocks strategy for plastic waste: Rice University lab detours potential environmental hazard into useful material October 30th, 2020
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Nanoparticle vaccine for COVID-19 January 8th, 2021
Transition metal ‘cocktail’ helps make brand new superconductors: Concept of high entropy alloys provides a discovery platform for new superconductors January 8th, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
Spontaneous robot dances highlight a new kind of order in active matter January 1st, 2021
Photonics/Optics/Lasers
USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021
Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020