Nanotechnology Now – Press Release: Study reveals new mode of triggering immune responses


Home > Press > Study reveals new mode of triggering immune responses

Confocal microscopy image shows that DNA (green) and the chemokine CXCL4 (red) colocalize (indicated by yellow areas) during inflammatory responses in the skin.
CREDIT
Barrat lab
Confocal microscopy image shows that DNA (green) and the chemokine CXCL4 (red) colocalize (indicated by yellow areas) during inflammatory responses in the skin.
CREDIT
Barrat lab

Abstract:
Small proteins, called chemokines, that direct immune cells toward sites of infection can also form DNA-bound nanoparticles that can induce chronic, dysfunctional immune responses, according to a new study by researchers at Weill Cornell Medicine and Hospital for Special Surgery (HSS). The surprising discovery of this new activity for this well-studied class of immune signaling molecules could shed light on some types of immune disorders.

Study reveals new mode of triggering immune responses


New York, NY | Posted on July 15th, 2022

The study, published May 31 in the Journal of Experimental Medicine, reveals an entirely new mode of triggering the immune system, through which chemokine-DNA nanoparticles can induce inflammation. Results in preclinical models suggest that this mechanism may play a central role in autoimmune diseases such as scleroderma and lupus.

The work was part of the scientists’ ongoing efforts to understand scleroderma, an autoimmune condition that causes inflammation and hardening of the skin. “We had a project looking at scleroderma and it was shown by us and others a few years ago that patients with this condition have an elevated level of the chemokine CXCL4 in their blood,” said senior author Dr. Franck Barrat, professor of microbiology and immunology at Weill Cornell Medicine and the Michael Bloomberg Chair and senior scientist at HSS. “But the role of this chemokine in disease is unclear and we didn’t expect the chemokine to provoke this particular immune response.”

In setting up controls for one of their experiments, Dr. Barrat’s team, including first author, Dr. Yong Du, a postdoctoral associate in microbiology and immunology at Weill Cornell Medicine and a member of the HSS Research Institute, discovered that CXCL4 and several other chemokines could induce immune cells called plasmacytoid dendritic cells (pDCs) to produce interferon-alpha. Surprisingly, the induction appeared to be independent of known chemokine receptors, indicating that these molecules were activating the immune cells through some previously unknown mechanism.

Subsequent experiments revealed that the chemokines can bind pieces of DNA to form nanoparticles, which then bypass the cells’ chemokine receptors to induce interferon production directly. Tests in mouse models of skin inflammation suggest that this mechanism could account for the chronic immune activation that underlies scleroderma and other autoimmune diseases. The results also suggest that different DNA-chemokine nanoparticles could underlie different diseases. For example, while CXCL4 appears to be important in scleroderma, another chemokine, CXCL10, may perform a similar function in lupus.

Dr. Barrat believes that the DNA-chemokine nanoparticles are likely an essential component of the body’s wound healing system. “Following a skin injury, such as if you cut yourself, dendritic cells infiltrate the skin and create an inflammatory environment to allow for proper closing of the wound. Our findings suggest that these cells do not need to see a pathogen—a virus or bacterium—and can directly sense self-DNA,” he said. “And that inflammation is helping to recruit other cells of the immune system.” In autoimmune disease, the process goes awry, producing a chronic inflammatory state that ultimately damages tissue instead of healing it.

The researchers also collaborated on a related study, published June 14 in Nature Communications, that shows that CXCL4 can induce a similar inflammatory response in monocytes, another important class of immune cells. Taken together, the findings point toward possible strategies to shut down autoimmunity without interfering with normal immune responses.

“It tells you the type of response that you have to stop, not necessarily at the DNA-chemokine level, but potentially more downstream in the cells themselves,” Dr. Barrat said.

####

For more information, please click here

Contacts:
Eliza Powell
Weill Cornell Medicine

Copyright © Weill Cornell Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

Study:

News and information


A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022


Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022


Novel compound boosts urea to sustainable energy reaction process, researchers report: Integrating energy-saving hydrogen production with urea electrooxidation over crystalline-amorphous NiO-CrOx electrocatalyst July 15th, 2022


Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

Possible Futures


Recent advances in 3D electronics July 15th, 2022


‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022


Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022


Novel compound boosts urea to sustainable energy reaction process, researchers report: Integrating energy-saving hydrogen production with urea electrooxidation over crystalline-amorphous NiO-CrOx electrocatalyst July 15th, 2022

Nanomedicine


UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022


CEA-Leti Barn-Owl Inspired, Object-Localization System Uses Up to ‘5 Orders of Magnitude’ Less Energy than Existing Technology: Paper in Nature Communications Describes Neuromorphic Computing Device With ‘Virtually No Power Consumption’ When Idle, Thanks to On-Chip Non-Volatile M July 8th, 2022


An artificial intelligence probe help see tumor malignancy July 1st, 2022


Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022

Discoveries


Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022


‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022


Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022


Novel compound boosts urea to sustainable energy reaction process, researchers report: Integrating energy-saving hydrogen production with urea electrooxidation over crystalline-amorphous NiO-CrOx electrocatalyst July 15th, 2022

Announcements


Recent advances in 3D electronics July 15th, 2022


‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022


Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022


Novel compound boosts urea to sustainable energy reaction process, researchers report: Integrating energy-saving hydrogen production with urea electrooxidation over crystalline-amorphous NiO-CrOx electrocatalyst July 15th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters


Recent advances in 3D electronics July 15th, 2022


‘Life-like’ lasers can self-organise, adapt their structure, and cooperate July 15th, 2022


Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022


Novel compound boosts urea to sustainable energy reaction process, researchers report: Integrating energy-saving hydrogen production with urea electrooxidation over crystalline-amorphous NiO-CrOx electrocatalyst July 15th, 2022

Nanobiotechnology


UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022


Robot nose that can “smell” disease on your breath: Scientists develop diagnostic device for identifying compounds unique to particular diseases July 1st, 2022


From outside to inside: A rapid and precise total assessment method for cells: Researchers at Nara Institute of Science and Technology show that using four frequencies of applied voltage can improve the measurement of cell size and shape during impedance cytometry, enabling to en June 24th, 2022


New technology helps reveal inner workings of human genome June 24th, 2022

Leave a Reply

Your email address will not be published. Required fields are marked *